1
0
forked from metin2/client
client/SphereLib/sphere.cpp

249 lines
6.4 KiB
C++

/* Copyright (C) John W. Ratcliff, 2001.
* All rights reserved worldwide.
*
* This software is provided "as is" without express or implied
* warranties. You may freely copy and compile this source into
* applications you distribute provided that the copyright text
* below is included in the resulting source code, for example:
* "Portions Copyright (C) John W. Ratcliff, 2001"
*/
#include "Stdafx.h"
#include "sphere.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
bool Vector3d::IsInStaticRange() const
{
const float LIMIT = 3276700.0f;
if (x<LIMIT && x>-LIMIT)
if (y<LIMIT && y>-LIMIT)
if (z<LIMIT && z>-LIMIT)
return true;
return false;
}
void Sphere::Set(const Vector3d &center, float radius)
{
#ifdef __STATIC_RANGE__
assert(center.IsInStaticRange());
#endif
mCenter = center;
mRadius = radius;
mRadius2 = radius*radius;
}
//ray-sphere intersection test from Graphics Gems p.388
// **NOTE** There is a bug in this Graphics Gem. If the origin
// of the ray is *inside* the sphere being tested, it reports the
// wrong intersection location. This code has a fix for the bug.
bool Sphere::RayIntersection(const Vector3d &rayOrigin,
const Vector3d &dir,
Vector3d *intersect)
{
//notation:
//point E = rayOrigin
//point O = sphere center
Vector3d EO = mCenter - rayOrigin;
Vector3d V = dir;
float dist2 = EO.x*EO.x + EO.y*EO.y + EO.z * EO.z;
// Bug Fix For Gem, if origin is *inside* the sphere, invert the
// direction vector so that we get a valid intersection location.
if ( dist2 < mRadius2 ) V*=-1;
float v = EO.Dot(V);
float disc = mRadius2 - (EO.Length2() - v*v);
if (disc > 0.0f)
{
if ( intersect )
{
float d = sqrtf(disc);
//float dist2 = rayOrigin.DistanceSq(mCenter);
*intersect = rayOrigin + V*(v-d);
}
return true;
}
return false;
}
//
bool Sphere::RayIntersection(const Vector3d &rayOrigin,
const Vector3d &V,
float distance,
Vector3d *intersect)
{
Vector3d sect;
bool hit = RayIntersectionInFront(rayOrigin,V,&sect);
if ( hit )
{
float d = rayOrigin.DistanceSq(sect);
if ( d > (distance*distance) ) return false;
if ( intersect ) *intersect = sect;
return true;
}
return false;
}
bool Sphere::RayIntersectionInFront(const Vector3d &rayOrigin,
const Vector3d &V,
Vector3d *intersect)
{
Vector3d sect;
bool hit = RayIntersection(rayOrigin,V,&sect);
if ( hit )
{
Vector3d dir = sect - rayOrigin;
float dot = dir.Dot(V);
if ( dot >= 0 ) // then it's in front!
{
if ( intersect ) *intersect = sect;
return true;
}
}
return false;
}
void Sphere::Report(void)
{
}
/*
An Efficient Bounding Sphere
by Jack Ritter
from "Graphics Gems", Academic Press, 1990
*/
/* Routine to calculate tight bounding sphere over */
/* a set of points in 3D */
/* This contains the routine find_bounding_sphere(), */
/* the struct definition, and the globals used for parameters. */
/* The abs() of all coordinates must be < BIGNUMBER */
/* Code written by Jack Ritter and Lyle Rains. */
#define BIGNUMBER 100000000.0 /* hundred million */
void Sphere::Compute(const SphereInterface &source)
{
Vector3d xmin,xmax,ymin,ymax,zmin,zmax,dia1,dia2;
/* FIRST PASS: find 6 minima/maxima points */
xmin.Set(BIGNUMBER,BIGNUMBER,BIGNUMBER);
xmax.Set(-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
ymin.Set(BIGNUMBER,BIGNUMBER,BIGNUMBER);
ymax.Set(-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
zmin.Set(BIGNUMBER,BIGNUMBER,BIGNUMBER);
zmax.Set(-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
int count = source.GetVertexCount();
for (int i=0; i<count; i++)
{
Vector3d caller_p;
source.GetVertex(i,caller_p);
if (caller_p.GetX()<xmin.GetX()) xmin = caller_p; /* New xminimum point */
if (caller_p.GetX()>xmax.GetX()) xmax = caller_p;
if (caller_p.GetY()<ymin.GetY()) ymin = caller_p;
if (caller_p.GetY()>ymax.GetY()) ymax = caller_p;
if (caller_p.GetZ()<zmin.GetZ()) zmin = caller_p;
if (caller_p.GetZ()>zmax.GetZ()) zmax = caller_p;
}
/* Set xspan = distance between the 2 points xmin & xmax (squared) */
float dx = xmax.GetX() - xmin.GetX();
float dy = xmax.GetY() - xmin.GetY();
float dz = xmax.GetZ() - xmin.GetZ();
float xspan = dx*dx + dy*dy + dz*dz;
/* Same for y & z spans */
dx = ymax.GetX() - ymin.GetX();
dy = ymax.GetY() - ymin.GetY();
dz = ymax.GetZ() - ymin.GetZ();
float yspan = dx*dx + dy*dy + dz*dz;
dx = zmax.GetX() - zmin.GetX();
dy = zmax.GetY() - zmin.GetY();
dz = zmax.GetZ() - zmin.GetZ();
float zspan = dx*dx + dy*dy + dz*dz;
/* Set points dia1 & dia2 to the maximally separated pair */
dia1 = xmin;
dia2 = xmax; /* assume xspan biggest */
float maxspan = xspan;
if (yspan>maxspan)
{
maxspan = yspan;
dia1 = ymin;
dia2 = ymax;
}
if (zspan>maxspan)
{
dia1 = zmin;
dia2 = zmax;
}
/* dia1,dia2 is a diameter of initial sphere */
/* calc initial center */
mCenter.SetX( (dia1.GetX()+dia2.GetX())*0.5f );
mCenter.SetY( (dia1.GetY()+dia2.GetY())*0.5f );
mCenter.SetZ( (dia1.GetZ()+dia2.GetZ())*0.5f );
/* calculate initial radius**2 and radius */
dx = dia2.GetX()-mCenter.GetX(); /* x component of radius vector */
dy = dia2.GetY()-mCenter.GetY(); /* y component of radius vector */
dz = dia2.GetZ()-mCenter.GetZ(); /* z component of radius vector */
mRadius2 = dx*dx + dy*dy + dz*dz;
mRadius = float(sqrt(mRadius2));
/* SECOND PASS: increment current sphere */
for (int j=0; j<count; j++)
{
Vector3d caller_p;
source.GetVertex(j,caller_p);
dx = caller_p.GetX()-mCenter.GetX();
dy = caller_p.GetY()-mCenter.GetY();
dz = caller_p.GetZ()-mCenter.GetZ();
float old_to_p_sq = dx*dx + dy*dy + dz*dz;
if (old_to_p_sq > mRadius2) /* do r**2 test first */
{ /* this point is outside of current sphere */
float old_to_p = float(sqrt(old_to_p_sq));
/* calc radius of new sphere */
mRadius = (mRadius + old_to_p) * 0.5f;
mRadius2 = mRadius*mRadius; /* for next r**2 compare */
float old_to_new = old_to_p - mRadius;
/* calc center of new sphere */
float recip = 1.0f /old_to_p;
float cx = (mRadius*mCenter.GetX() + old_to_new*caller_p.GetX()) * recip;
float cy = (mRadius*mCenter.GetY() + old_to_new*caller_p.GetY()) * recip;
float cz = (mRadius*mCenter.GetZ() + old_to_new*caller_p.GetZ()) * recip;
mCenter.Set(cx,cy,cz);
}
}
}