forked from metin2/client
850 lines
30 KiB
C++
850 lines
30 KiB
C++
/**************************************************************************************
|
|
| File: lineintersect_utils.cpp
|
|
| Purpose: Implementation of line segment intersection utility functions
|
|
| Book Title: Game Programming Gems II
|
|
| Chapter Title: Fast, Robust Intersection of 3D Line Segments
|
|
| Author: Graham Rhodes
|
|
| Revisions: 05-Apr-2001 - GSR. Original.
|
|
**************************************************************************************/
|
|
#include "Stdafx.h"
|
|
#include <math.h>
|
|
#include "lineintersect_utils.h"
|
|
#include <assert.h>
|
|
|
|
// uncomment the following line to have the code check intermediate results
|
|
//#define CHECK_ANSWERS
|
|
|
|
// uncomment the following line to use Cramer's rule instead of Gaussian elimination
|
|
//#define USE_CRAMERS_RULE
|
|
|
|
#define FMAX(a,b) ((a) > (b) ? (a) : (b))
|
|
#define FMIN(a,b) ((a) > (b) ? (b) : (a))
|
|
#define FABS(a) ((a) < 0.0f ? -(a) : (a))
|
|
#define OUT_OF_RANGE(a) ((a) < 0.0f || (a) > 1.f)
|
|
|
|
#define MY_EPSILON 0.1f
|
|
|
|
__forceinline void FindNearestPointOnLineSegment(const D3DXVECTOR3 & A1,
|
|
const D3DXVECTOR3 & L,
|
|
const D3DXVECTOR3 & B,
|
|
D3DXVECTOR3 & Nearest,
|
|
float ¶meter)
|
|
{
|
|
// Line/Segment is degenerate --- special case #1
|
|
float D = D3DXVec3LengthSq(&L);
|
|
if (D < MY_EPSILON*MY_EPSILON)
|
|
{
|
|
Nearest = A1;
|
|
return;
|
|
}
|
|
|
|
D3DXVECTOR3 AB = B-A1;
|
|
|
|
// parameter is computed from Equation (20).
|
|
parameter = (D3DXVec3Dot(&AB,&L)) / D;
|
|
|
|
//if (false == infinite_line)
|
|
parameter = FMAX(0.0f, FMIN(1.0f, parameter));
|
|
|
|
Nearest = A1 + parameter * L;
|
|
return;
|
|
}
|
|
|
|
/**************************************************************************
|
|
|
|
|
| Method: FindNearestPointOfParallelLineSegments
|
|
|
|
|
| Purpose: Given two lines (segments) that are known to be parallel, find
|
|
| a representative point on each that is nearest to the other. If
|
|
| the lines are considered to be finite then it is possible that there
|
|
| is one true point on each line that is nearest to the other. This
|
|
| code properly handles this case.
|
|
|
|
|
| This is the most difficult line intersection case to handle, since
|
|
| there is potentially a family, or locus of points on each line/segment
|
|
| that are nearest to the other.
|
|
| Parameters: Input:
|
|
| ------
|
|
| A1x, A1y, A1z - Coordinates of first defining point of line/segment A
|
|
| A2x, A2y, A2z - Coordinates of second defining point of line/segment A
|
|
| Lax, Lay, Laz - Vector from (A1x, A1y, A1z) to the (A2x, A2y, A2z).
|
|
| B1x, B1y, B1z - Coordinates of first defining point of line/segment B
|
|
| B2x, B2y, B2z - Coordinates of second defining point of line/segment B
|
|
| Lbx, Lby, Lbz - Vector from (B1x, B1y, B1z) to the (B2x, B2y, B2z).
|
|
| infinite_lines - set to true if lines are to be treated as infinite
|
|
| epsilon_squared - tolerance value to be used to check for degenerate
|
|
| and parallel lines, and to check for true intersection.
|
|
|
|
|
| Output:
|
|
| -------
|
|
| PointOnSegAx, - Coordinates of the point on segment A that are nearest
|
|
| PointOnSegAy, to segment B. This corresponds to point C in the text.
|
|
| PointOnSegAz
|
|
| PointOnSegBx, - Coordinates of the point on segment B that are nearest
|
|
| PointOnSegBy, to segment A. This corresponds to point D in the text.
|
|
| PointOnSegBz
|
|
|
|
**************************************************************************/
|
|
__forceinline void FindNearestPointOfParallelLineSegments(const D3DXVECTOR3 & A1,
|
|
const D3DXVECTOR3 & A2,
|
|
const D3DXVECTOR3 & La,
|
|
const D3DXVECTOR3 & B1,
|
|
const D3DXVECTOR3 & B2,
|
|
const D3DXVECTOR3 & Lb,
|
|
//bool infinite_lines, float epsilon_squared,
|
|
D3DXVECTOR3 & OutA,
|
|
D3DXVECTOR3 & OutB)
|
|
{
|
|
float s[2], temp;
|
|
FindNearestPointOnLineSegment(A1, La, B1, OutA, s[0]);
|
|
/*if (true == infinite_lines)
|
|
{
|
|
PointOnSegBx = B1x;
|
|
PointOnSegBy = B1y;
|
|
PointOnSegBz = B1z;
|
|
}
|
|
else*/
|
|
{
|
|
//float tp[3];
|
|
D3DXVECTOR3 tp;
|
|
FindNearestPointOnLineSegment(A1, La, B2,
|
|
tp, s[1]);
|
|
if (s[0] < 0.f && s[1] < 0.f)
|
|
{
|
|
OutA = A1;
|
|
if (s[0] < s[1])
|
|
{
|
|
OutB =B2;
|
|
}
|
|
else
|
|
{
|
|
OutB = B1;
|
|
}
|
|
}
|
|
else if (s[0] > 1.f && s[1] > 1.f)
|
|
{
|
|
OutA = A2;
|
|
if (s[0] < s[1])
|
|
{
|
|
OutB = B1;
|
|
}
|
|
else
|
|
{
|
|
OutB = B2;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
temp = 0.5f*(FMAX(0.0f, FMIN(1.0f, s[0])) + FMAX(0.0f, FMIN(1.0f, s[1])));
|
|
OutA = A1 + temp * La;
|
|
FindNearestPointOnLineSegment(B1, Lb,
|
|
OutA, OutB, temp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
|
|
|
| Method: AdjustNearestPoints
|
|
|
|
|
| Purpose: Given nearest point information for two infinite lines, adjust
|
|
| to model finite line segments.
|
|
|
|
|
| Parameters: Input:
|
|
| ------
|
|
| A1x, A1y, A1z - Coordinates of first defining point of line/segment A
|
|
| Lax, Lay, Laz - Vector from (A1x, A1y, A1z) to the (A2x, A2y, A2z).
|
|
| B1x, B1y, B1z - Coordinates of first defining point of line/segment B
|
|
| Lbx, Lby, Lbz - Vector from (B1x, B1y, B1z) to the (B2x, B2y, B2z).
|
|
| epsilon_squared - tolerance value to be used to check for degenerate
|
|
| and parallel lines, and to check for true intersection.
|
|
| s - parameter representing nearest point on infinite line A
|
|
| t - parameter representing nearest point on infinite line B
|
|
|
|
|
| Output:
|
|
| -------
|
|
| PointOnSegAx, - Coordinates of the point on segment A that are nearest
|
|
| PointOnSegAy, to segment B. This corresponds to point C in the text.
|
|
| PointOnSegAz
|
|
| PointOnSegBx, - Coordinates of the point on segment B that are nearest
|
|
| PointOnSegBy, to segment A. This corresponds to point D in the text.
|
|
| PointOnSegBz
|
|
**************************************************************************/
|
|
__forceinline void AdjustNearestPoints(const D3DXVECTOR3 & A1,
|
|
const D3DXVECTOR3 & La,
|
|
const D3DXVECTOR3 & B1,
|
|
const D3DXVECTOR3 & Lb,
|
|
float s, float t,
|
|
D3DXVECTOR3 & OutA,
|
|
D3DXVECTOR3 & OutB)
|
|
{
|
|
// handle the case where both parameter s and t are out of range
|
|
if (OUT_OF_RANGE(s) && OUT_OF_RANGE(t))
|
|
{
|
|
s = FMAX(0.0f, FMIN(1.0f, s));
|
|
OutA = A1 + s*La;
|
|
FindNearestPointOnLineSegment(B1, Lb,
|
|
OutA,
|
|
OutB, t);
|
|
if (OUT_OF_RANGE(t))
|
|
{
|
|
t = FMAX(0.0f, FMIN(1.0f, t));
|
|
OutB = B1 + t*Lb;
|
|
FindNearestPointOnLineSegment(A1, La, OutB,
|
|
OutA, s);
|
|
FindNearestPointOnLineSegment(B1, Lb, OutA,
|
|
OutB, t);
|
|
}
|
|
}
|
|
// otherwise, handle the case where the parameter for only one segment is
|
|
// out of range
|
|
else if (OUT_OF_RANGE(s))
|
|
{
|
|
s = FMAX(0.0f, FMIN(1.0f, s));
|
|
OutA = A1 + s*La;
|
|
FindNearestPointOnLineSegment(B1, Lb,
|
|
OutA,
|
|
OutB, t);
|
|
}
|
|
else if (OUT_OF_RANGE(t))
|
|
{
|
|
t = FMAX(0.0f, FMIN(1.0f, t));
|
|
OutB = B1 + t*Lb;
|
|
FindNearestPointOnLineSegment(A1, La, OutB,
|
|
OutA, s);
|
|
}
|
|
else
|
|
{
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
void IntersectLineSegments(const D3DXVECTOR3 & A1,
|
|
const D3DXVECTOR3 & A2,
|
|
const D3DXVECTOR3 & B1,
|
|
const D3DXVECTOR3 & B2,
|
|
//bool infinite_lines, /*float epsilon,*/
|
|
D3DXVECTOR3 & OutA,
|
|
D3DXVECTOR3 & OutB)
|
|
{
|
|
float temp = 0.f;
|
|
const float epsilon = MY_EPSILON;
|
|
const float epsilon_squared = MY_EPSILON*MY_EPSILON;
|
|
|
|
// Compute parameters from Equations (1) and (2) in the text
|
|
D3DXVECTOR3 La = A2-A1;
|
|
D3DXVECTOR3 Lb = B2-B1;
|
|
// From Equation (15)
|
|
float L11 = D3DXVec3LengthSq(&La);
|
|
float L22 = D3DXVec3LengthSq(&Lb);
|
|
|
|
// Line/Segment A is degenerate ---- Special Case #1
|
|
if (L11 < epsilon_squared)
|
|
{
|
|
OutA = A1;
|
|
FindNearestPointOnLineSegment(B1, Lb, A1,
|
|
OutB, temp);
|
|
}
|
|
// Line/Segment B is degenerate ---- Special Case #1
|
|
else if (L22 < epsilon_squared)
|
|
{
|
|
OutB = B1;
|
|
FindNearestPointOnLineSegment(A1, La, B1,
|
|
OutA, temp);
|
|
}
|
|
// Neither line/segment is degenerate
|
|
else
|
|
{
|
|
// Compute more parameters from Equation (3) in the text.
|
|
D3DXVECTOR3 AB = B1 - A1;
|
|
|
|
// and from Equation (15).
|
|
float L12 = -D3DXVec3Dot(&La, &Lb);
|
|
|
|
float DetL = L11 * L22 - L12 * L12;
|
|
// Lines/Segments A and B are parallel ---- special case #2.
|
|
if (FABS(DetL) < epsilon)
|
|
{
|
|
FindNearestPointOfParallelLineSegments(A1, A2,
|
|
La,
|
|
B1, B2,
|
|
Lb,
|
|
OutA, OutB);
|
|
}
|
|
// The general case
|
|
else
|
|
{
|
|
// from Equation (15)
|
|
float ra = D3DXVec3Dot(&La, &AB);//Lax * ABx + Lay * ABy + Laz * ABz;
|
|
float rb = D3DXVec3Dot(&Lb, &AB);//-Lbx * ABx - Lby * ABy - Lbz * ABz;
|
|
|
|
float t = (L11 * rb - ra * L12)/DetL; // Equation (12)
|
|
|
|
#ifdef USE_CRAMERS_RULE
|
|
float s = (L22 * ra - rb * L12)/DetL;
|
|
#else
|
|
float s = (ra-L12*t)/L11; // Equation (13)
|
|
#endif // USE_CRAMERS_RULE
|
|
|
|
#ifdef CHECK_ANSWERS
|
|
float check_ra = s*L11 + t*L12;
|
|
float check_rb = s*L12 + t*L22;
|
|
assert(FABS(check_ra-ra) < epsilon);
|
|
assert(FABS(check_rb-rb) < epsilon);
|
|
#endif // CHECK_ANSWERS
|
|
|
|
// if we are dealing with infinite lines or if parameters s and t both
|
|
// lie in the range [0,1] then just compute the points using Equations
|
|
// (1) and (2) from the text.
|
|
OutA = (A1 + s * La);
|
|
OutB = (B1 + t * Lb);
|
|
// otherwise, at least one of s and t is outside of [0,1] and we have to
|
|
// handle this case.
|
|
if ((OUT_OF_RANGE(s) || OUT_OF_RANGE(t)))
|
|
{
|
|
AdjustNearestPoints(A1,La,B1,Lb,
|
|
s, t,
|
|
OutA,
|
|
OutB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void IntersectLineSegments(const float A1x, const float A1y, const float A1z,
|
|
const float A2x, const float A2y, const float A2z,
|
|
const float B1x, const float B1y, const float B1z,
|
|
const float B2x, const float B2y, const float B2z,
|
|
bool infinite_lines, float epsilon, float &PointOnSegAx,
|
|
float &PointOnSegAy, float &PointOnSegAz, float &PointOnSegBx,
|
|
float &PointOnSegBy, float &PointOnSegBz)
|
|
{
|
|
float temp = 0.f;
|
|
float epsilon_squared = epsilon * epsilon;
|
|
|
|
// Compute parameters from Equations (1) and (2) in the text
|
|
float Lax = A2x - A1x;
|
|
float Lay = A2y - A1y;
|
|
float Laz = A2z - A1z;
|
|
float Lbx = B2x - B1x;
|
|
float Lby = B2y - B1y;
|
|
float Lbz = B2z - B1z;
|
|
// From Equation (15)
|
|
float L11 = (Lax * Lax) + (Lay * Lay) + (Laz * Laz);
|
|
float L22 = (Lbx * Lbx) + (Lby * Lby) + (Lbz * Lbz);
|
|
|
|
// Line/Segment A is degenerate ---- Special Case #1
|
|
if (L11 < epsilon_squared)
|
|
{
|
|
PointOnSegAx = A1x;
|
|
PointOnSegAy = A1y;
|
|
PointOnSegAz = A1z;
|
|
FindNearestPointOnLineSegment(B1x, B1y, B1z, Lbx, Lby, Lbz, A1x, A1y, A1z,
|
|
infinite_lines, epsilon, PointOnSegBx, PointOnSegBy,
|
|
PointOnSegBz, temp);
|
|
}
|
|
// Line/Segment B is degenerate ---- Special Case #1
|
|
else if (L22 < epsilon_squared)
|
|
{
|
|
PointOnSegBx = B1x;
|
|
PointOnSegBy = B1y;
|
|
PointOnSegBz = B1z;
|
|
FindNearestPointOnLineSegment(A1x, A1y, A1z, Lax, Lay, Laz, B1x, B1y, B1z,
|
|
infinite_lines, epsilon, PointOnSegAx, PointOnSegAy,
|
|
PointOnSegAz, temp);
|
|
}
|
|
// Neither line/segment is degenerate
|
|
else
|
|
{
|
|
// Compute more parameters from Equation (3) in the text.
|
|
float ABx = B1x - A1x;
|
|
float ABy = B1y - A1y;
|
|
float ABz = B1z - A1z;
|
|
|
|
// and from Equation (15).
|
|
float L12 = -(Lax * Lbx) - (Lay * Lby) - (Laz * Lbz);
|
|
|
|
float DetL = L11 * L22 - L12 * L12;
|
|
// Lines/Segments A and B are parallel ---- special case #2.
|
|
if (FABS(DetL) < epsilon)
|
|
{
|
|
FindNearestPointOfParallelLineSegments(A1x, A1y, A1z, A2x, A2y, A2z,
|
|
Lax, Lay, Laz,
|
|
B1x, B1y, B1z, B2x, B2y, B2z,
|
|
Lbx, Lby, Lbz,
|
|
infinite_lines, epsilon,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz);
|
|
}
|
|
// The general case
|
|
else
|
|
{
|
|
// from Equation (15)
|
|
float ra = Lax * ABx + Lay * ABy + Laz * ABz;
|
|
float rb = -Lbx * ABx - Lby * ABy - Lbz * ABz;
|
|
|
|
float t = (L11 * rb - ra * L12)/DetL; // Equation (12)
|
|
|
|
#ifdef USE_CRAMERS_RULE
|
|
float s = (L22 * ra - rb * L12)/DetL;
|
|
#else
|
|
float s = (ra-L12*t)/L11; // Equation (13)
|
|
#endif // USE_CRAMERS_RULE
|
|
|
|
#ifdef CHECK_ANSWERS
|
|
float check_ra = s*L11 + t*L12;
|
|
float check_rb = s*L12 + t*L22;
|
|
assert(FABS(check_ra-ra) < epsilon);
|
|
assert(FABS(check_rb-rb) < epsilon);
|
|
#endif // CHECK_ANSWERS
|
|
|
|
// if we are dealing with infinite lines or if parameters s and t both
|
|
// lie in the range [0,1] then just compute the points using Equations
|
|
// (1) and (2) from the text.
|
|
PointOnSegAx = (A1x + s * Lax);
|
|
PointOnSegAy = (A1y + s * Lay);
|
|
PointOnSegAz = (A1z + s * Laz);
|
|
PointOnSegBx = (B1x + t * Lbx);
|
|
PointOnSegBy = (B1y + t * Lby);
|
|
PointOnSegBz = (B1z + t * Lbz);
|
|
// otherwise, at least one of s and t is outside of [0,1] and we have to
|
|
// handle this case.
|
|
if (false == infinite_lines && (OUT_OF_RANGE(s) || OUT_OF_RANGE(t)))
|
|
{
|
|
AdjustNearestPoints(A1x, A1y, A1z, Lax, Lay, Laz,
|
|
B1x, B1y, B1z, Lbx, Lby, Lbz,
|
|
epsilon, s, t,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
// pragma to get rid of math.h inline function removal warnings.
|
|
#pragma warning(disable:4514)
|
|
|
|
/**************************************************************************
|
|
|
|
|
| Method: IntersectLineSegments
|
|
|
|
|
| Purpose: Find the nearest point between two finite length line segments
|
|
| or two infinite lines in 3-dimensional space. The function calculates
|
|
| the point on each line/line segment that is closest to the other
|
|
| line/line segment, the midpoint between the nearest points, and
|
|
| the vector between these two points. If the two nearest points
|
|
| are close within a tolerance, a flag is set indicating the lines
|
|
| have a "true" intersection.
|
|
|
|
|
| Parameters: Input:
|
|
| ------
|
|
| A1x, A1y, A1z - Coordinates of first defining point of line/segment A
|
|
| A2x, A2y, A2z - Coordinates of second defining point of line/segment A
|
|
| B1x, B1y, B1z - Coordinates of first defining point of line/segment B
|
|
| B2x, B2y, B2z - Coordinates of second defining point of line/segment B
|
|
| infinite_lines - set to true if lines are to be treated as infinite
|
|
| epsilon - tolerance value to be used to check for degenerate
|
|
| and parallel lines, and to check for true intersection.
|
|
|
|
|
| Output:
|
|
| -------
|
|
| PointOnSegAx, - Coordinates of the point on segment A that are nearest
|
|
| PointOnSegAy, to segment B. This corresponds to point C in the text.
|
|
| PointOnSegAz
|
|
| PointOnSegBx, - Coordinates of the point on segment B that are nearest
|
|
| PointOnSegBy, to segment A. This corresponds to point D in the text.
|
|
| PointOnSegBz
|
|
| NearestPointX, - Midpoint between the two nearest points. This can be
|
|
| NearestPointY, treated as *the* intersection point if nearest points
|
|
| NearestPointZ are sufficiently close. This corresponds to point P
|
|
| in the text.
|
|
| NearestVectorX, - Vector between the nearest point on A to the nearest
|
|
| point on segment B. This vector is normal to both
|
|
| lines if the lines are infinite, but is not guaranteed
|
|
| to be normal to both lines if both lines are finite
|
|
| length.
|
|
| true_intersection - true if the nearest points are close within a small
|
|
| tolerance.
|
|
**************************************************************************/
|
|
void IntersectLineSegments(const float A1x, const float A1y, const float A1z,
|
|
const float A2x, const float A2y, const float A2z,
|
|
const float B1x, const float B1y, const float B1z,
|
|
const float B2x, const float B2y, const float B2z,
|
|
bool infinite_lines, float epsilon, float &PointOnSegAx,
|
|
float &PointOnSegAy, float &PointOnSegAz, float &PointOnSegBx,
|
|
float &PointOnSegBy, float &PointOnSegBz, float &NearestPointX,
|
|
float &NearestPointY, float &NearestPointZ, float &NearestVectorX,
|
|
float &NearestVectorY, float &NearestVectorZ, bool &true_intersection)
|
|
{
|
|
float temp = 0.f;
|
|
float epsilon_squared = epsilon * epsilon;
|
|
|
|
// Compute parameters from Equations (1) and (2) in the text
|
|
float Lax = A2x - A1x;
|
|
float Lay = A2y - A1y;
|
|
float Laz = A2z - A1z;
|
|
float Lbx = B2x - B1x;
|
|
float Lby = B2y - B1y;
|
|
float Lbz = B2z - B1z;
|
|
// From Equation (15)
|
|
float L11 = (Lax * Lax) + (Lay * Lay) + (Laz * Laz);
|
|
float L22 = (Lbx * Lbx) + (Lby * Lby) + (Lbz * Lbz);
|
|
|
|
// Line/Segment A is degenerate ---- Special Case #1
|
|
if (L11 < epsilon_squared)
|
|
{
|
|
PointOnSegAx = A1x;
|
|
PointOnSegAy = A1y;
|
|
PointOnSegAz = A1z;
|
|
FindNearestPointOnLineSegment(B1x, B1y, B1z, Lbx, Lby, Lbz, A1x, A1y, A1z,
|
|
infinite_lines, epsilon, PointOnSegBx, PointOnSegBy,
|
|
PointOnSegBz, temp);
|
|
}
|
|
// Line/Segment B is degenerate ---- Special Case #1
|
|
else if (L22 < epsilon_squared)
|
|
{
|
|
PointOnSegBx = B1x;
|
|
PointOnSegBy = B1y;
|
|
PointOnSegBz = B1z;
|
|
FindNearestPointOnLineSegment(A1x, A1y, A1z, Lax, Lay, Laz, B1x, B1y, B1z,
|
|
infinite_lines, epsilon, PointOnSegAx, PointOnSegAy,
|
|
PointOnSegAz, temp);
|
|
}
|
|
// Neither line/segment is degenerate
|
|
else
|
|
{
|
|
// Compute more parameters from Equation (3) in the text.
|
|
float ABx = B1x - A1x;
|
|
float ABy = B1y - A1y;
|
|
float ABz = B1z - A1z;
|
|
|
|
// and from Equation (15).
|
|
float L12 = -(Lax * Lbx) - (Lay * Lby) - (Laz * Lbz);
|
|
|
|
float DetL = L11 * L22 - L12 * L12;
|
|
// Lines/Segments A and B are parallel ---- special case #2.
|
|
if (FABS(DetL) < epsilon)
|
|
{
|
|
FindNearestPointOfParallelLineSegments(A1x, A1y, A1z, A2x, A2y, A2z,
|
|
Lax, Lay, Laz,
|
|
B1x, B1y, B1z, B2x, B2y, B2z,
|
|
Lbx, Lby, Lbz,
|
|
infinite_lines, epsilon,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz);
|
|
}
|
|
// The general case
|
|
else
|
|
{
|
|
// from Equation (15)
|
|
float ra = Lax * ABx + Lay * ABy + Laz * ABz;
|
|
float rb = -Lbx * ABx - Lby * ABy - Lbz * ABz;
|
|
|
|
float t = (L11 * rb - ra * L12)/DetL; // Equation (12)
|
|
|
|
#ifdef USE_CRAMERS_RULE
|
|
float s = (L22 * ra - rb * L12)/DetL;
|
|
#else
|
|
float s = (ra-L12*t)/L11; // Equation (13)
|
|
#endif // USE_CRAMERS_RULE
|
|
|
|
#ifdef CHECK_ANSWERS
|
|
float check_ra = s*L11 + t*L12;
|
|
float check_rb = s*L12 + t*L22;
|
|
assert(FABS(check_ra-ra) < epsilon);
|
|
assert(FABS(check_rb-rb) < epsilon);
|
|
#endif // CHECK_ANSWERS
|
|
|
|
// if we are dealing with infinite lines or if parameters s and t both
|
|
// lie in the range [0,1] then just compute the points using Equations
|
|
// (1) and (2) from the text.
|
|
PointOnSegAx = (A1x + s * Lax);
|
|
PointOnSegAy = (A1y + s * Lay);
|
|
PointOnSegAz = (A1z + s * Laz);
|
|
PointOnSegBx = (B1x + t * Lbx);
|
|
PointOnSegBy = (B1y + t * Lby);
|
|
PointOnSegBz = (B1z + t * Lbz);
|
|
// otherwise, at least one of s and t is outside of [0,1] and we have to
|
|
// handle this case.
|
|
if (false == infinite_lines && (OUT_OF_RANGE(s) || OUT_OF_RANGE(t)))
|
|
{
|
|
AdjustNearestPoints(A1x, A1y, A1z, Lax, Lay, Laz,
|
|
B1x, B1y, B1z, Lbx, Lby, Lbz,
|
|
epsilon, s, t,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz);
|
|
}
|
|
}
|
|
}
|
|
|
|
NearestPointX = 0.5f * (PointOnSegAx + PointOnSegBx);
|
|
NearestPointY = 0.5f * (PointOnSegAy + PointOnSegBy);
|
|
NearestPointZ = 0.5f * (PointOnSegAz + PointOnSegBz);
|
|
|
|
NearestVectorX = PointOnSegBx - PointOnSegAx;
|
|
NearestVectorY = PointOnSegBy - PointOnSegAy;
|
|
NearestVectorZ = PointOnSegBz - PointOnSegAz;
|
|
|
|
// optional check to indicate if the lines truly intersect
|
|
true_intersection = (FABS(NearestVectorX) +
|
|
FABS(NearestVectorY) +
|
|
FABS(NearestVectorZ)) < epsilon ? true : false;
|
|
}
|
|
|
|
/**************************************************************************
|
|
|
|
|
| Method: FindNearestPointOnLineSegment
|
|
|
|
|
| Purpose: Given a line (segment) and a point in 3-dimensional space,
|
|
| find the point on the line (segment) that is closest to the
|
|
| point.
|
|
|
|
|
| Parameters: Input:
|
|
| ------
|
|
| A1x, A1y, A1z - Coordinates of first defining point of the line/segment
|
|
| Lx, Ly, Lz - Vector from (A1x, A1y, A1z) to the second defining point
|
|
| of the line/segment.
|
|
| Bx, By, Bz - Coordinates of the point
|
|
| infinite_lines - set to true if lines are to be treated as infinite
|
|
| epsilon_squared - tolerance value to be used to check for degenerate
|
|
| and parallel lines, and to check for true intersection.
|
|
|
|
|
| Output:
|
|
| -------
|
|
| NearestPointX, - Point on line/segment that is closest to (Bx, By, Bz)
|
|
| NearestPointY,
|
|
| NearestPointZ
|
|
| parameter - Parametric coordinate of the nearest point along the
|
|
| line/segment. parameter = 0 at (A1x, A1y, A1z) and
|
|
| parameter = 1 at the second defining point of the line/
|
|
| segmetn
|
|
**************************************************************************/
|
|
void FindNearestPointOnLineSegment(const float A1x, const float A1y, const float A1z,
|
|
const float Lx, const float Ly, const float Lz,
|
|
const float Bx, const float By, const float Bz,
|
|
bool infinite_line, float epsilon_squared, float &NearestPointX,
|
|
float &NearestPointY, float &NearestPointZ,
|
|
float ¶meter)
|
|
{
|
|
// Line/Segment is degenerate --- special case #1
|
|
float D = Lx * Lx + Ly * Ly + Lz * Lz;
|
|
if (D < epsilon_squared)
|
|
{
|
|
NearestPointX = A1x;
|
|
NearestPointY = A1y;
|
|
NearestPointZ = A1z;
|
|
return;
|
|
}
|
|
|
|
float ABx = Bx - A1x;
|
|
float ABy = By - A1y;
|
|
float ABz = Bz - A1z;
|
|
|
|
// parameter is computed from Equation (20).
|
|
parameter = (Lx * ABx + Ly * ABy + Lz * ABz) / D;
|
|
|
|
if (false == infinite_line) parameter = FMAX(0.0f, FMIN(1.0f, parameter));
|
|
|
|
NearestPointX = A1x + parameter * Lx;
|
|
NearestPointY = A1y + parameter * Ly;
|
|
NearestPointZ = A1z + parameter * Lz;
|
|
return;
|
|
}
|
|
|
|
/**************************************************************************
|
|
|
|
|
| Method: FindNearestPointOfParallelLineSegments
|
|
|
|
|
| Purpose: Given two lines (segments) that are known to be parallel, find
|
|
| a representative point on each that is nearest to the other. If
|
|
| the lines are considered to be finite then it is possible that there
|
|
| is one true point on each line that is nearest to the other. This
|
|
| code properly handles this case.
|
|
|
|
|
| This is the most difficult line intersection case to handle, since
|
|
| there is potentially a family, or locus of points on each line/segment
|
|
| that are nearest to the other.
|
|
| Parameters: Input:
|
|
| ------
|
|
| A1x, A1y, A1z - Coordinates of first defining point of line/segment A
|
|
| A2x, A2y, A2z - Coordinates of second defining point of line/segment A
|
|
| Lax, Lay, Laz - Vector from (A1x, A1y, A1z) to the (A2x, A2y, A2z).
|
|
| B1x, B1y, B1z - Coordinates of first defining point of line/segment B
|
|
| B2x, B2y, B2z - Coordinates of second defining point of line/segment B
|
|
| Lbx, Lby, Lbz - Vector from (B1x, B1y, B1z) to the (B2x, B2y, B2z).
|
|
| infinite_lines - set to true if lines are to be treated as infinite
|
|
| epsilon_squared - tolerance value to be used to check for degenerate
|
|
| and parallel lines, and to check for true intersection.
|
|
|
|
|
| Output:
|
|
| -------
|
|
| PointOnSegAx, - Coordinates of the point on segment A that are nearest
|
|
| PointOnSegAy, to segment B. This corresponds to point C in the text.
|
|
| PointOnSegAz
|
|
| PointOnSegBx, - Coordinates of the point on segment B that are nearest
|
|
| PointOnSegBy, to segment A. This corresponds to point D in the text.
|
|
| PointOnSegBz
|
|
|
|
**************************************************************************/
|
|
void FindNearestPointOfParallelLineSegments(float A1x, float A1y, float A1z,
|
|
float A2x, float A2y, float A2z,
|
|
float Lax, float Lay, float Laz,
|
|
float B1x, float B1y, float B1z,
|
|
float B2x, float B2y, float B2z,
|
|
float Lbx, float Lby, float Lbz,
|
|
bool infinite_lines, float epsilon_squared,
|
|
float &PointOnSegAx, float &PointOnSegAy, float &PointOnSegAz,
|
|
float &PointOnSegBx, float &PointOnSegBy, float &PointOnSegBz)
|
|
{
|
|
float s[2], temp;
|
|
FindNearestPointOnLineSegment(A1x, A1y, A1z, Lax, Lay, Laz, B1x, B1y, B1z,
|
|
true, epsilon_squared, PointOnSegAx, PointOnSegAy, PointOnSegAz, s[0]);
|
|
if (true == infinite_lines)
|
|
{
|
|
PointOnSegBx = B1x;
|
|
PointOnSegBy = B1y;
|
|
PointOnSegBz = B1z;
|
|
}
|
|
else
|
|
{
|
|
float tp[3];
|
|
FindNearestPointOnLineSegment(A1x, A1y, A1z, Lax, Lay, Laz, B2x, B2y, B2z,
|
|
true, epsilon_squared, tp[0], tp[1], tp[2], s[1]);
|
|
if (s[0] < 0.f && s[1] < 0.f)
|
|
{
|
|
PointOnSegAx = A1x;
|
|
PointOnSegAy = A1y;
|
|
PointOnSegAz = A1z;
|
|
if (s[0] < s[1])
|
|
{
|
|
PointOnSegBx = B2x;
|
|
PointOnSegBy = B2y;
|
|
PointOnSegBz = B2z;
|
|
}
|
|
else
|
|
{
|
|
PointOnSegBx = B1x;
|
|
PointOnSegBy = B1y;
|
|
PointOnSegBz = B1z;
|
|
}
|
|
}
|
|
else if (s[0] > 1.f && s[1] > 1.f)
|
|
{
|
|
PointOnSegAx = A2x;
|
|
PointOnSegAy = A2y;
|
|
PointOnSegAz = A2z;
|
|
if (s[0] < s[1])
|
|
{
|
|
PointOnSegBx = B1x;
|
|
PointOnSegBy = B1y;
|
|
PointOnSegBz = B1z;
|
|
}
|
|
else
|
|
{
|
|
PointOnSegBx = B2x;
|
|
PointOnSegBy = B2y;
|
|
PointOnSegBz = B2z;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
temp = 0.5f*(FMAX(0.0f, FMIN(1.0f, s[0])) + FMAX(0.0f, FMIN(1.0f, s[1])));
|
|
PointOnSegAx = (A1x + temp * Lax);
|
|
PointOnSegAy = (A1y + temp * Lay);
|
|
PointOnSegAz = (A1z + temp * Laz);
|
|
FindNearestPointOnLineSegment(B1x, B1y, B1z, Lbx, Lby, Lbz,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz, true,
|
|
epsilon_squared, PointOnSegBx, PointOnSegBy, PointOnSegBz, temp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**************************************************************************
|
|
|
|
|
| Method: AdjustNearestPoints
|
|
|
|
|
| Purpose: Given nearest point information for two infinite lines, adjust
|
|
| to model finite line segments.
|
|
|
|
|
| Parameters: Input:
|
|
| ------
|
|
| A1x, A1y, A1z - Coordinates of first defining point of line/segment A
|
|
| Lax, Lay, Laz - Vector from (A1x, A1y, A1z) to the (A2x, A2y, A2z).
|
|
| B1x, B1y, B1z - Coordinates of first defining point of line/segment B
|
|
| Lbx, Lby, Lbz - Vector from (B1x, B1y, B1z) to the (B2x, B2y, B2z).
|
|
| epsilon_squared - tolerance value to be used to check for degenerate
|
|
| and parallel lines, and to check for true intersection.
|
|
| s - parameter representing nearest point on infinite line A
|
|
| t - parameter representing nearest point on infinite line B
|
|
|
|
|
| Output:
|
|
| -------
|
|
| PointOnSegAx, - Coordinates of the point on segment A that are nearest
|
|
| PointOnSegAy, to segment B. This corresponds to point C in the text.
|
|
| PointOnSegAz
|
|
| PointOnSegBx, - Coordinates of the point on segment B that are nearest
|
|
| PointOnSegBy, to segment A. This corresponds to point D in the text.
|
|
| PointOnSegBz
|
|
**************************************************************************/
|
|
void AdjustNearestPoints(float A1x, float A1y, float A1z,
|
|
float Lax, float Lay, float Laz,
|
|
float B1x, float B1y, float B1z,
|
|
float Lbx, float Lby, float Lbz,
|
|
float epsilon_squared, float s, float t,
|
|
float &PointOnSegAx, float &PointOnSegAy, float &PointOnSegAz,
|
|
float &PointOnSegBx, float &PointOnSegBy, float &PointOnSegBz)
|
|
{
|
|
// handle the case where both parameter s and t are out of range
|
|
if (OUT_OF_RANGE(s) && OUT_OF_RANGE(t))
|
|
{
|
|
s = FMAX(0.0f, FMIN(1.0f, s));
|
|
PointOnSegAx = (A1x + s * Lax);
|
|
PointOnSegAy = (A1y + s * Lay);
|
|
PointOnSegAz = (A1z + s * Laz);
|
|
FindNearestPointOnLineSegment(B1x, B1y, B1z, Lbx, Lby, Lbz, PointOnSegAx,
|
|
PointOnSegAy, PointOnSegAz, true, epsilon_squared,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz, t);
|
|
if (OUT_OF_RANGE(t))
|
|
{
|
|
t = FMAX(0.0f, FMIN(1.0f, t));
|
|
PointOnSegBx = (B1x + t * Lbx);
|
|
PointOnSegBy = (B1y + t * Lby);
|
|
PointOnSegBz = (B1z + t * Lbz);
|
|
FindNearestPointOnLineSegment(A1x, A1y, A1z, Lax, Lay, Laz, PointOnSegBx,
|
|
PointOnSegBy, PointOnSegBz, false, epsilon_squared,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz, s);
|
|
FindNearestPointOnLineSegment(B1x, B1y, B1z, Lbx, Lby, Lbz, PointOnSegAx,
|
|
PointOnSegAy, PointOnSegAz, false, epsilon_squared,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz, t);
|
|
}
|
|
}
|
|
// otherwise, handle the case where the parameter for only one segment is
|
|
// out of range
|
|
else if (OUT_OF_RANGE(s))
|
|
{
|
|
s = FMAX(0.0f, FMIN(1.0f, s));
|
|
PointOnSegAx = (A1x + s * Lax);
|
|
PointOnSegAy = (A1y + s * Lay);
|
|
PointOnSegAz = (A1z + s * Laz);
|
|
FindNearestPointOnLineSegment(B1x, B1y, B1z, Lbx, Lby, Lbz, PointOnSegAx,
|
|
PointOnSegAy, PointOnSegAz, false, epsilon_squared,
|
|
PointOnSegBx, PointOnSegBy, PointOnSegBz, t);
|
|
}
|
|
else if (OUT_OF_RANGE(t))
|
|
{
|
|
t = FMAX(0.0f, FMIN(1.0f, t));
|
|
PointOnSegBx = (B1x + t * Lbx);
|
|
PointOnSegBy = (B1y + t * Lby);
|
|
PointOnSegBz = (B1z + t * Lbz);
|
|
FindNearestPointOnLineSegment(A1x, A1y, A1z, Lax, Lay, Laz, PointOnSegBx,
|
|
PointOnSegBy, PointOnSegBz, false, epsilon_squared,
|
|
PointOnSegAx, PointOnSegAy, PointOnSegAz, s);
|
|
}
|
|
else
|
|
{
|
|
assert(0);
|
|
}
|
|
}
|