1
0
forked from metin2/client
client/SpeedTreeLib/VertexShaders.h

332 lines
10 KiB
C++

///////////////////////////////////////////////////////////////////////
// SpeedTreeRT DirectX Example
//
// (c) 2003 IDV, Inc.
//
// This example demonstrates how to render trees using SpeedTreeRT
// and DirectX. Techniques illustrated include ".spt" file parsing,
// static lighting, dynamic lighting, LOD implementation, cloning,
// instancing, and dynamic wind effects.
//
//
// *** INTERACTIVE DATA VISUALIZATION (IDV) PROPRIETARY INFORMATION ***
//
// This software is supplied under the terms of a license agreement or
// nondisclosure agreement with Interactive Data Visualization and may
// not be copied or disclosed except in accordance with the terms of
// that agreement.
//
// Copyright (c) 2001-2003 IDV, Inc.
// All Rights Reserved.
//
// IDV, Inc.
// 1233 Washington St. Suite 610
// Columbia, SC 29201
// Voice: (803) 799-1699
// Fax: (803) 931-0320
// Web: http://www.idvinc.com
///////////////////////////////////////////////////////////////////////
// Includes
#pragma once
#include "SpeedTreeConfig.h"
#include <map>
#include <string>
///////////////////////////////////////////////////////////////////////
// Branch & Frond Vertex Formats
static DWORD D3DFVF_SPEEDTREE_BRANCH_VERTEX =
D3DFVF_XYZ | // always have the position
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING // precomputed colors or geometric normals
D3DFVF_NORMAL |
#else
D3DFVF_DIFFUSE |
#endif
#ifdef WRAPPER_RENDER_SELF_SHADOWS
D3DFVF_TEX2 | D3DFVF_TEXCOORDSIZE2(0) | D3DFVF_TEXCOORDSIZE2(1) // shadow texture coordinates
#else
D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0) // always have first texture layer coords
#endif
#ifdef WRAPPER_USE_GPU_WIND
| D3DFVF_TEX3 | D3DFVF_TEXCOORDSIZE2(2) // GPU Only - wind weight and index passed in second texture layer
#endif
;
///////////////////////////////////////////////////////////////////////
// FVF Branch Vertex Structure
struct SFVFBranchVertex
{
D3DXVECTOR3 m_vPosition; // Always Used
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
D3DXVECTOR3 m_vNormal; // Dynamic Lighting Only
#else
DWORD m_dwDiffuseColor; // Static Lighting Only
#endif
FLOAT m_fTexCoords[2]; // Always Used
#ifdef WRAPPER_RENDER_SELF_SHADOWS
FLOAT m_fShadowCoords[2]; // Texture coordinates for the shadows
#endif
#ifdef WRAPPER_USE_GPU_WIND
FLOAT m_fWindIndex; // GPU Only
FLOAT m_fWindWeight;
#endif
};
///////////////////////////////////////////////////////////////////////
// Branch/Frond Vertex Program
static const char g_achSimpleVertexProgram[] =
{
"vs.1.1\n" // identity shader version
"mov oT0.xy, v7\n" // always pass texcoord0 through
#ifdef WRAPPER_RENDER_SELF_SHADOWS
"mov oT1.xy, v8\n" // pass shadow texcoords through if enabled
#endif
// retrieve and convert wind matrix index
"mov a0.x, v9.x\n"
// perform wind interpolation
"m4x4 r1, v0, c[54+a0.x]\n" // compute full wind effect
"sub r2, r1, v0\n" // compute difference between full wind and none
"mov r3.x, v9.y\n" // mad can't access two v's at once, use r3.x as tmp
"mad r1, r2, r3.x, v0\n" // perform interpolation
"add r2, c[52], r1\n" // translate to tree's position
"m4x4 oPos, r2, c[0]\n" // project to screen
#ifdef WRAPPER_USE_FOG
"dp4 r1, r2, c[2]\n" // find distance to vertex
"sub r2.x, c[85].y, r1.z\n" // linear fogging
"mul oFog, r2.x, c[85].z\n" // write to fog register
#endif
#ifdef WRAPPER_USE_STATIC_LIGHTING
"mov oD0, v5\n" // pass color through
#else
"mov r1, c[74]\n" // can only use one const register per instruction
"mul r5, c[73], r1\n" // diffuse values
"mov r1, c[75]\n" // can only use one const register per instruction
"mul r4, c[72], r1\n" // ambient values
"dp3 r2, v3, c[71]\n" // dot light direction with normal
// "max r2.x, r2.x, c[70].x\n" // limit it
"mad oD0, r2.x, r5, r4\n" // compute the final color
#endif
};
///////////////////////////////////////////////////////////////////////
// LoadBranchShader
static DWORD LoadBranchShader(LPDIRECT3DDEVICE8 pDx)
{
#ifndef WRAPPER_USE_GPU_WIND
return D3DFVF_SPEEDTREE_BRANCH_VERTEX;
#endif
// branch shader declaration
DWORD pBranchShaderDecl[] =
{
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3),
#else
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
#endif
D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
#ifdef WRAPPER_RENDER_SELF_SHADOWS
D3DVSD_REG(D3DVSDE_TEXCOORD1, D3DVSDT_FLOAT2),
#endif
#ifdef WRAPPER_USE_GPU_WIND
D3DVSD_REG(D3DVSDE_TEXCOORD2, D3DVSDT_FLOAT2),
#endif
D3DVSD_END( )
};
// assemble shader
DWORD dwShader;
LPD3DXBUFFER pCode, pError;
if (D3DXAssembleShader(g_achSimpleVertexProgram, sizeof(g_achSimpleVertexProgram) - 1, 0, NULL, &pCode, &pError) == D3D_OK)
{
if (pDx->CreateVertexShader(pBranchShaderDecl, (DWORD*) pCode->GetBufferPointer( ), &dwShader, 0) != D3D_OK)
{
char szError[1024];
sprintf(szError, "Failed to create branch vertex shader.");
MessageBox(NULL, szError, "Vertex Shader Error", MB_ICONSTOP);
}
}
else
{
char szError[1024];
sprintf(szError, "Failed to assemble branch vertex shader.\nThe error reported is [ %s ].\n", pError->GetBufferPointer( ));
MessageBox(NULL, szError, "Vertex Shader Error", MB_ICONSTOP);
}
if (pCode)
pCode->Release();
return dwShader;
}
///////////////////////////////////////////////////////////////////////
// Leaf Vertex Formats
static DWORD D3DFVF_SPEEDTREE_LEAF_VERTEX =
D3DFVF_XYZ | // always have the position
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING // precomputed colors or geometric normals
D3DFVF_NORMAL |
#else
D3DFVF_DIFFUSE |
#endif
D3DFVF_TEX1 | D3DFVF_TEXCOORDSIZE2(0) // always have first texture layer coords
#if defined WRAPPER_USE_GPU_WIND || defined WRAPPER_USE_GPU_LEAF_PLACEMENT
| D3DFVF_TEX3 | D3DFVF_TEXCOORDSIZE4(2) // GPU Only - wind weight and index passed in second texture layer
#endif
;
///////////////////////////////////////////////////////////////////////
// FVF Leaf Vertex Structure
struct SFVFLeafVertex
{
D3DXVECTOR3 m_vPosition; // Always Used
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
D3DXVECTOR3 m_vNormal; // Dynamic Lighting Only
#else
DWORD m_dwDiffuseColor; // Static Lighting Only
#endif
FLOAT m_fTexCoords[2]; // Always Used
#if defined WRAPPER_USE_GPU_WIND || defined WRAPPER_USE_GPU_LEAF_PLACEMENT
FLOAT m_fWindIndex; // Only used when GPU is involved
FLOAT m_fWindWeight;
FLOAT m_fLeafPlacementIndex;
FLOAT m_fLeafScalarValue;
#endif
};
///////////////////////////////////////////////////////////////////////
// Leaf Vertex Program
static const char g_achLeafVertexProgram[] =
{
"vs.1.1\n" // identity shader version
"mov oT0.xy, v7\n" // always pass texcoord0 through
#ifdef WRAPPER_USE_GPU_WIND
// retrieve and convert wind matrix index
"mov a0.x, v9.x\n"
// perform wind interpolation
"m4x4 r1, v0, c[54+a0.x]\n" // compute full wind effect
"sub r2, r1, v0\n" // compute difference between full wind and none
"mov r3.x, v9.y\n" // mad can't access two v's at once, use r3.x as tmp
"mad r0, r2, r3.x, v0\n" // perform interpolation
#else
"mov r0, v0\n" // wind already handled, pass the vertex through
#endif
#ifdef WRAPPER_USE_GPU_LEAF_PLACEMENT
"mov a0.x, v9.z\n" // place the leaves
"mul r1, c[a0.x], v9.w\n"
"add r0, r1, r0\n"
#endif
"add r0, c[52], r0\n" // translate to tree's position
"m4x4 oPos, r0, c[0]\n" // project to screen
#ifdef WRAPPER_USE_FOG
"dp4 r1, r0, c[2]\n" // find distance to vertex
"sub r2.x, c[85].y, r1.z\n" //
"mul oFog, r2.x, c[85].z\n"
#endif
#ifdef WRAPPER_USE_STATIC_LIGHTING
"mov oD0, v5\n" // pass color through
#else
"mov r1, c[74]\n" // can only use one const register per instruction
"mul r5, c[73], r1\n" // diffuse values
"mov r1, c[75]\n" // can only use one const register per instruction
"mul r4, c[72], r1\n" // ambient values
"dp3 r2.x, v3, c[71]\n" // dot light direction with normal
"max r2.x, r2.x, c[70].x\n" // limit it
"mad oD0, r2.x, r5, r4\n" // compute the final color
#endif
};
///////////////////////////////////////////////////////////////////////
// LoadLeafShader
static DWORD LoadLeafShader(LPDIRECT3DDEVICE8 pDx)
{
DWORD dwShader = D3DFVF_SPEEDTREE_LEAF_VERTEX;
#if defined WRAPPER_USE_GPU_LEAF_PLACEMENT || defined WRAPPER_USE_GPU_WIND
// leaf shader declaration
DWORD pLeafShaderDecl[ ] =
{
D3DVSD_STREAM(0),
D3DVSD_REG(D3DVSDE_POSITION, D3DVSDT_FLOAT3),
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
D3DVSD_REG(D3DVSDE_NORMAL, D3DVSDT_FLOAT3),
#else
D3DVSD_REG(D3DVSDE_DIFFUSE, D3DVSDT_D3DCOLOR),
#endif
D3DVSD_REG(D3DVSDE_TEXCOORD0, D3DVSDT_FLOAT2),
D3DVSD_REG(D3DVSDE_TEXCOORD2, D3DVSDT_FLOAT4),
D3DVSD_END( )
};
// assemble shader
LPD3DXBUFFER pCode, pError;
if (D3DXAssembleShader(g_achLeafVertexProgram, sizeof(g_achLeafVertexProgram) - 1, 0, NULL, &pCode, &pError) == D3D_OK)
{
if (pDx->CreateVertexShader(pLeafShaderDecl, (DWORD*) pCode->GetBufferPointer( ), &dwShader, 0) != D3D_OK)
{
Tracef("Failed to create leaf vertex shader.");
/*
char szError[1024];
sprintf(szError, "Failed to create leaf vertex shader.");
MessageBox(NULL, szError, "Vertex Shader Error", MB_ICONSTOP);
*/
}
}
else
{
Tracef("Failed to assemble leaf vertex shader. The error reported is [ %s ].\n", pError->GetBufferPointer( ));
/*
char szError[1024];
sprintf(szError, "Failed to assemble leaf vertex shader. The error reported is [ %s ].\n", pError->GetBufferPointer( ));
MessageBox(NULL, szError, "Vertex Shader Error", MB_ICONSTOP);
*/
}
if (pCode)
pCode->Release( );
#else
dwShader = D3DFVF_SPEEDTREE_LEAF_VERTEX;
#endif
return dwShader;
}