client/SpeedTreeLib/SpeedTreeWrapper.cpp

1478 lines
50 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper Class
//
// (c) 2003 IDV, Inc.
//
// This class is provided to illustrate one way to incorporate
// SpeedTreeRT into an OpenGL application. All of the SpeedTreeRT
// calls that must be made on a per tree basis are done by this class.
// Calls that apply to all trees (i.e. static SpeedTreeRT functions)
// are made in the functions in main.cpp.
//
//
// *** INTERACTIVE DATA VISUALIZATION (IDV) PROPRIETARY INFORMATION ***
//
// This software is supplied under the terms of a license agreement or
// nondisclosure agreement with Interactive Data Visualization and may
// not be copied or disclosed except in accordance with the terms of
// that agreement.
//
// Copyright (c) 2001-2003 IDV, Inc.
// All Rights Reserved.
//
// IDV, Inc.
// 1233 Washington St. Suite 610
// Columbia, SC 29201
// Voice: (803) 799-1699
// Fax: (803) 931-0320
// Web: http://www.idvinc.com
//
#pragma warning(disable:4786)
///////////////////////////////////////////////////////////////////////
// Include Files
#include "StdAfx.h"
#include <stdlib.h>
#include <stdio.h>
#include "../eterBase/Debug.h"
#include "../eterBase/Timer.h"
#include "../eterBase/Filename.h"
#include "../eterLib/ResourceManager.h"
#include "../eterLib/Camera.h"
#include "../eterLib/StateManager.h"
#include "SpeedTreeConfig.h"
#include "SpeedTreeForestDirectX8.h"
#include "SpeedTreeWrapper.h"
#include "VertexShaders.h"
using namespace std;
DWORD CSpeedTreeWrapper::ms_dwBranchVertexShader = 0;
DWORD CSpeedTreeWrapper::ms_dwLeafVertexShader = 0;
bool CSpeedTreeWrapper::ms_bSelfShadowOn = true;
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::CSpeedTreeWrapper
CSpeedTreeWrapper::CSpeedTreeWrapper() :
m_pSpeedTree(new CSpeedTreeRT),
m_bIsInstance(false),
m_pInstanceOf(NULL),
m_pGeometryCache(NULL),
m_usNumLeafLods(0),
m_pBranchIndexCounts(NULL),
m_pBranchIndexBuffer(NULL),
m_pBranchVertexBuffer(NULL),
m_pFrondIndexCounts(NULL),
m_pFrondIndexBuffer(NULL),
m_pFrondVertexBuffer(NULL),
m_pLeafVertexBuffer(NULL),
m_pLeavesUpdatedByCpu(NULL),
m_unBranchVertexCount(0),
m_unFrondVertexCount(0),
m_pTextureInfo(NULL)
{
// set initial position
m_afPos[0] = m_afPos[1] = m_afPos[2] = 0.0f;
m_pSpeedTree->SetWindStrength(1.0f);
m_pSpeedTree->SetLocalMatrices(0, 4);
}
void CSpeedTreeWrapper::SetVertexShaders(DWORD dwBranchVertexShader, DWORD dwLeafVertexShader)
{
ms_dwBranchVertexShader = dwBranchVertexShader;
ms_dwLeafVertexShader = dwLeafVertexShader;
}
void CSpeedTreeWrapper::OnRenderPCBlocker()
{
if (ms_dwBranchVertexShader == 0)
{
ms_dwBranchVertexShader = LoadBranchShader(ms_lpd3dDevice);
//LogBox("Vertex Shader not assigned. You must call CSpeedTreeWrapper::SetVertexShader for this");
}
if (ms_dwLeafVertexShader == 0)
{
ms_dwLeafVertexShader = LoadLeafShader(ms_lpd3dDevice);
//LogBox("Vertex Shader not assigned. You must call CSpeedTreeWrapper::SetVertexShader for this");
}
CSpeedTreeForestDirectX8::Instance().UpdateSystem(ELTimer_GetMSec() / 1000.0f);
// <20>ϳ<EFBFBD><CFB3><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD> LOD <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
m_pSpeedTree->SetLodLevel(1.0f);
//Advance();
CSpeedTreeForestDirectX8::Instance().UpdateCompundMatrix(CCameraManager::Instance().GetCurrentCamera()->GetEye(), ms_matView, ms_matProj);
STATEMANAGER.SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
STATEMANAGER.SetTextureStageState(1, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
STATEMANAGER.SetTextureStageState(1, D3DTSS_ALPHAARG2, D3DTA_CURRENT);
STATEMANAGER.SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
DWORD dwLighting = STATEMANAGER.GetRenderState(D3DRS_LIGHTING);
DWORD dwFogEnable = STATEMANAGER.GetRenderState(D3DRS_FOGENABLE);
DWORD dwAlphaBlendEnable = STATEMANAGER.GetRenderState(D3DRS_ALPHABLENDENABLE);
STATEMANAGER.SetRenderState(D3DRS_LIGHTING, FALSE);
STATEMANAGER.SaveRenderState(D3DRS_COLORVERTEX, TRUE);
STATEMANAGER.SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
STATEMANAGER.SaveRenderState(D3DRS_ALPHATESTENABLE, TRUE);
STATEMANAGER.SaveRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER);
STATEMANAGER.SaveRenderState(D3DRS_CULLMODE, D3DCULL_CW);
STATEMANAGER.SetRenderState(D3DRS_FOGENABLE, FALSE);
// choose fixed function pipeline or custom shader for fronds and branches
STATEMANAGER.SetVertexShader(ms_dwBranchVertexShader);
// SetupBranchForTreeType();
{
// update the branch geometry for CPU wind
#ifdef WRAPPER_USE_CPU_WIND
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_BranchGeometry);
if (m_pGeometryCache->m_sBranches.m_usNumStrips > 0)
{
// update the vertex array
SFVFBranchVertex* pVertexBuffer = NULL;
m_pBranchVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
for (UINT i = 0; i < m_unBranchVertexCount; ++i)
{
memcpy(&(pVertexBuffer[i].m_vPosition), &(m_pGeometryCache->m_sBranches.m_pCoords[i * 3]), 3 * sizeof(float));
}
m_pBranchVertexBuffer->Unlock();
}
#endif
LPDIRECT3DTEXTURE8 lpd3dTexture;
// set texture map
if ((lpd3dTexture = m_BranchImageInstance.GetTextureReference().GetD3DTexture()))
STATEMANAGER.SetTexture(0, lpd3dTexture);
if (m_pGeometryCache->m_sBranches.m_usVertexCount > 0)
{
// activate the branch vertex buffer
STATEMANAGER.SetStreamSource(0, m_pBranchVertexBuffer, sizeof(SFVFBranchVertex));
// set the index buffer
STATEMANAGER.SetIndices(m_pBranchIndexBuffer, 0);
}
}
RenderBranches();
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
STATEMANAGER.SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
// SetupFrondForTreeType();
{
// update the frond geometry for CPU wind
#ifdef WRAPPER_USE_CPU_WIND
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_FrondGeometry);
if (m_pGeometryCache->m_sFronds.m_usNumStrips > 0)
{
// update the vertex array
SFVFBranchVertex * pVertexBuffer = NULL;
m_pFrondVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
for (UINT i = 0; i < m_unFrondVertexCount; ++i)
{
memcpy(&(pVertexBuffer[i].m_vPosition), &(m_pGeometryCache->m_sFronds.m_pCoords[i * 3]), 3 * sizeof(float));
}
m_pFrondVertexBuffer->Unlock();
}
#endif
if (!m_CompositeImageInstance.IsEmpty())
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
if (m_pGeometryCache->m_sFronds.m_usVertexCount > 0)
{
// activate the frond vertex buffer
STATEMANAGER.SetStreamSource(0, m_pFrondVertexBuffer, sizeof(SFVFBranchVertex));
// set the index buffer
STATEMANAGER.SetIndices(m_pFrondIndexBuffer, 0);
}
}
RenderFronds();
STATEMANAGER.SetVertexShader(ms_dwLeafVertexShader);
// SetupLeafForTreeType();
{
// pass leaf tables to shader
#ifdef WRAPPER_USE_GPU_LEAF_PLACEMENT
UploadLeafTables(c_nVertexShader_LeafTables);
#endif
if (!m_CompositeImageInstance.IsEmpty())
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
}
RenderLeaves();
EndLeafForTreeType();
STATEMANAGER.SetRenderState(D3DRS_LIGHTING, FALSE);
STATEMANAGER.SetRenderState(D3DRS_COLORVERTEX, FALSE);
RenderBillboards();
STATEMANAGER.RestoreRenderState(D3DRS_COLORVERTEX);
STATEMANAGER.RestoreRenderState(D3DRS_CULLMODE);
STATEMANAGER.RestoreRenderState(D3DRS_ALPHATESTENABLE);
STATEMANAGER.RestoreRenderState(D3DRS_ALPHAFUNC);
STATEMANAGER.SetRenderState(D3DRS_ALPHABLENDENABLE, dwAlphaBlendEnable);
STATEMANAGER.SetRenderState(D3DRS_LIGHTING, dwLighting);
STATEMANAGER.SetRenderState(D3DRS_FOGENABLE, dwFogEnable);
STATEMANAGER.SetTextureStageState(1, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
}
void CSpeedTreeWrapper::OnRender()
{
if (ms_dwBranchVertexShader == 0)
{
ms_dwBranchVertexShader = LoadBranchShader(ms_lpd3dDevice);
//LogBox("Vertex Shader not assigned. You must call CSpeedTreeWrapper::SetVertexShader for this");
}
if (ms_dwLeafVertexShader == 0)
{
ms_dwLeafVertexShader = LoadLeafShader(ms_lpd3dDevice);
//LogBox("Vertex Shader not assigned. You must call CSpeedTreeWrapper::SetVertexShader for this");
}
CSpeedTreeForestDirectX8::Instance().UpdateSystem(ELTimer_GetMSec() / 1000.0f);
// <20>ϳ<EFBFBD><CFB3><EFBFBD> <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><> <20><><EFBFBD><EFBFBD> LOD <20><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <20><><EFBFBD><EFBFBD>
m_pSpeedTree->SetLodLevel(1.0f);
//Advance();
CSpeedTreeForestDirectX8::Instance().UpdateCompundMatrix(CCameraManager::Instance().GetCurrentCamera()->GetEye(), ms_matView, ms_matProj);
STATEMANAGER.SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TEXTURE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_MODULATE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TEXTURE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_ALPHAARG2, D3DTA_DIFFUSE);
STATEMANAGER.SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_MODULATE);
STATEMANAGER.SetTextureStageState(1, D3DTSS_COLOROP, D3DTOP_MODULATE);
STATEMANAGER.SetTextureStageState(1, D3DTSS_COLORARG1, D3DTA_TEXTURE);
STATEMANAGER.SetTextureStageState(1, D3DTSS_COLORARG2, D3DTA_CURRENT);
STATEMANAGER.SetTextureStageState(1, D3DTSS_ADDRESSU, D3DTADDRESS_WRAP);
STATEMANAGER.SetTextureStageState(1, D3DTSS_ADDRESSV, D3DTADDRESS_WRAP);
STATEMANAGER.SaveRenderState(D3DRS_LIGHTING, FALSE);
STATEMANAGER.SaveRenderState(D3DRS_COLORVERTEX, TRUE);
STATEMANAGER.SaveRenderState(D3DRS_ALPHATESTENABLE, TRUE);
STATEMANAGER.SaveRenderState(D3DRS_ALPHAFUNC, D3DCMP_GREATER);
STATEMANAGER.SaveRenderState(D3DRS_CULLMODE, D3DCULL_CW);
STATEMANAGER.SaveRenderState(D3DRS_FOGENABLE, FALSE);
// choose fixed function pipeline or custom shader for fronds and branches
STATEMANAGER.SetVertexShader(ms_dwBranchVertexShader);
SetupBranchForTreeType();
RenderBranches();
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
STATEMANAGER.SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
SetupFrondForTreeType();
RenderFronds();
STATEMANAGER.SetVertexShader(ms_dwLeafVertexShader);
SetupLeafForTreeType();
RenderLeaves();
EndLeafForTreeType();
STATEMANAGER.SetRenderState(D3DRS_LIGHTING, FALSE);
STATEMANAGER.SetRenderState(D3DRS_COLORVERTEX, FALSE);
RenderBillboards();
STATEMANAGER.RestoreRenderState(D3DRS_LIGHTING);
STATEMANAGER.RestoreRenderState(D3DRS_COLORVERTEX);
STATEMANAGER.RestoreRenderState(D3DRS_ALPHATESTENABLE);
STATEMANAGER.RestoreRenderState(D3DRS_ALPHAFUNC);
STATEMANAGER.RestoreRenderState(D3DRS_CULLMODE);
STATEMANAGER.RestoreRenderState(D3DRS_FOGENABLE);
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::~CSpeedTreeWrapper
CSpeedTreeWrapper::~CSpeedTreeWrapper()
{
// if this is not an instance, clean up
if (!m_bIsInstance)
{
if (m_unBranchVertexCount > 0)
{
SAFE_RELEASE(m_pBranchVertexBuffer);
SAFE_RELEASE(m_pBranchIndexBuffer);
SAFE_DELETE_ARRAY(m_pBranchIndexCounts);
}
if (m_unFrondVertexCount > 0)
{
SAFE_RELEASE(m_pFrondVertexBuffer);
SAFE_RELEASE(m_pFrondIndexBuffer);
SAFE_DELETE_ARRAY(m_pFrondIndexCounts);
}
for (short i = 0; i < m_usNumLeafLods; ++i)
{
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_LeafGeometry, -1, -1, i);
if (m_pGeometryCache->m_sLeaves0.m_usLeafCount > 0)
SAFE_RELEASE(m_pLeafVertexBuffer[i]);
}
SAFE_DELETE_ARRAY(m_pLeavesUpdatedByCpu);
SAFE_DELETE_ARRAY(m_pLeafVertexBuffer);
SAFE_DELETE(m_pTextureInfo);
SAFE_DELETE(m_pGeometryCache);
}
// always delete the speedtree
SAFE_DELETE(m_pSpeedTree);
Clear();
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::LoadTree
bool CSpeedTreeWrapper::LoadTree(const char * pszSptFile, const BYTE * c_pbBlock, unsigned int uiBlockSize, UINT nSeed, float fSize, float fSizeVariance)
{
bool bSuccess = false;
// directx, so allow for flipping of the texture coordinate
#ifdef WRAPPER_FLIP_T_TEXCOORD
m_pSpeedTree->SetTextureFlip(true);
#endif
// load the tree file
if (!m_pSpeedTree->LoadTree(c_pbBlock, uiBlockSize))
{
if (!m_pSpeedTree->LoadTree(pszSptFile))
{
TraceError("SpeedTreeRT Error: %s", CSpeedTreeRT::GetCurrentError());
return false;
}
}
// override the lighting method stored in the spt file
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
m_pSpeedTree->SetBranchLightingMethod(CSpeedTreeRT::LIGHT_DYNAMIC);
m_pSpeedTree->SetLeafLightingMethod(CSpeedTreeRT::LIGHT_DYNAMIC);
m_pSpeedTree->SetFrondLightingMethod(CSpeedTreeRT::LIGHT_DYNAMIC);
#else
m_pSpeedTree->SetBranchLightingMethod(CSpeedTreeRT::LIGHT_STATIC);
m_pSpeedTree->SetLeafLightingMethod(CSpeedTreeRT::LIGHT_STATIC);
m_pSpeedTree->SetFrondLightingMethod(CSpeedTreeRT::LIGHT_STATIC);
#endif
// set the wind method
#ifdef WRAPPER_USE_GPU_WIND
m_pSpeedTree->SetBranchWindMethod(CSpeedTreeRT::WIND_GPU);
m_pSpeedTree->SetLeafWindMethod(CSpeedTreeRT::WIND_GPU);
m_pSpeedTree->SetFrondWindMethod(CSpeedTreeRT::WIND_GPU);
#endif
#ifdef WRAPPER_USE_CPU_WIND
m_pSpeedTree->SetBranchWindMethod(CSpeedTreeRT::WIND_CPU);
m_pSpeedTree->SetLeafWindMethod(CSpeedTreeRT::WIND_CPU);
m_pSpeedTree->SetFrondWindMethod(CSpeedTreeRT::WIND_CPU);
#endif
#ifdef WRAPPER_USE_NO_WIND
m_pSpeedTree->SetBranchWindMethod(CSpeedTreeRT::WIND_NONE);
m_pSpeedTree->SetLeafWindMethod(CSpeedTreeRT::WIND_NONE);
m_pSpeedTree->SetFrondWindMethod(CSpeedTreeRT::WIND_NONE);
#endif
m_pSpeedTree->SetNumLeafRockingGroups(1);
// override the size, if necessary
if (fSize >= 0.0f && fSizeVariance >= 0.0f)
m_pSpeedTree->SetTreeSize(fSize, fSizeVariance);
// generate tree geometry
if (m_pSpeedTree->Compute(NULL, nSeed))
{
// get the dimensions
m_pSpeedTree->GetBoundingBox(m_afBoundingBox);
// make the leaves rock in the wind
m_pSpeedTree->SetLeafRockingState(true);
// billboard setup
#ifdef WRAPPER_NO_BILLBOARD_MODE
CSpeedTreeRT::SetDropToBillboard(false);
#else
CSpeedTreeRT::SetDropToBillboard(true);
#endif
// query & set materials
m_cBranchMaterial.Set(m_pSpeedTree->GetBranchMaterial());
m_cFrondMaterial.Set(m_pSpeedTree->GetFrondMaterial());
m_cLeafMaterial.Set(m_pSpeedTree->GetLeafMaterial());
// adjust lod distances
float fHeight = m_afBoundingBox[5] - m_afBoundingBox[2];
m_pSpeedTree->SetLodLimits(fHeight * c_fNearLodFactor, fHeight * c_fFarLodFactor);
// query textures
m_pTextureInfo = new CSpeedTreeRT::STextures;
m_pSpeedTree->GetTextures(*m_pTextureInfo);
// load branch textures
LoadTexture((CFileNameHelper::GetPath(string(pszSptFile)) + CFileNameHelper::NoExtension(string(m_pTextureInfo->m_pBranchTextureFilename)) + ".dds").c_str(), m_BranchImageInstance);
#ifdef WRAPPER_RENDER_SELF_SHADOWS
if (m_pTextureInfo->m_pSelfShadowFilename != NULL)
LoadTexture((CFileNameHelper::GetPath(string(pszSptFile)) + CFileNameHelper::NoExtension(string(m_pTextureInfo->m_pSelfShadowFilename)) + ".dds").c_str(), m_ShadowImageInstance);
#endif
if (m_pTextureInfo->m_pCompositeFilename)
LoadTexture((CFileNameHelper::GetPath(string(pszSptFile)) + CFileNameHelper::NoExtension(string(m_pTextureInfo->m_pCompositeFilename)) + ".dds").c_str(), m_CompositeImageInstance);
// setup the index and vertex buffers
SetupBuffers();
// everything appeared to go well
bSuccess = true;
}
else // tree failed to compute
fprintf(stderr, "\nFatal Error, cannot compute tree [%s]\n\n", CSpeedTreeRT::GetCurrentError());
return bSuccess;
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupBuffers
void CSpeedTreeWrapper::SetupBuffers(void)
{
// read all the geometry for highest LOD into the geometry cache (just a precaution, it's updated later)
m_pSpeedTree->SetLodLevel(1.0f);
if (m_pGeometryCache == NULL)
m_pGeometryCache = new CSpeedTreeRT::SGeometry;
m_pSpeedTree->GetGeometry(*m_pGeometryCache);
// setup the buffers for each part
SetupBranchBuffers();
SetupFrondBuffers();
SetupLeafBuffers();
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupBranchBuffers
void CSpeedTreeWrapper::SetupBranchBuffers(void)
{
// reference to branch structure
CSpeedTreeRT::SGeometry::SIndexed* pBranches = &(m_pGeometryCache->m_sBranches);
m_unBranchVertexCount = pBranches->m_usVertexCount; // we asked for a contiguous strip
// check if this tree has branches
if (m_unBranchVertexCount > 1)
{
// create the vertex buffer for storing branch vertices
SFVFBranchVertex * pVertexBuffer = NULL;
#ifndef WRAPPER_USE_CPU_WIND
ms_lpd3dDevice->CreateVertexBuffer(m_unBranchVertexCount * sizeof(SFVFBranchVertex), D3DUSAGE_WRITEONLY, D3DFVF_SPEEDTREE_BRANCH_VERTEX, D3DPOOL_MANAGED, &m_pBranchVertexBuffer);
// fill the vertex buffer by interleaving SpeedTree data
m_pBranchVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), 0);
#else
ms_lpd3dDevice->CreateVertexBuffer(m_unBranchVertexCount * sizeof(SFVFBranchVertex), D3DUSAGE_DYNAMIC, D3DFVF_SPEEDTREE_BRANCH_VERTEX, D3DPOOL_SYSTEMMEM, &m_pBranchVertexBuffer);
// fill the vertex buffer by interleaving SpeedTree data
m_pBranchVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
#endif
{
for (UINT i = 0; i < m_unBranchVertexCount; ++i)
{
// position
memcpy(&pVertexBuffer->m_vPosition, &(pBranches->m_pCoords[i * 3]), 3 * sizeof(float));
// normal or color
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
memcpy(&pVertexBuffer->m_vNormal, &(pBranches->m_pNormals[i * 3]), 3 * sizeof(float));
#else
pVertexBuffer->m_dwDiffuseColor = pBranches->m_pColors[i];
#endif
// texcoords for layer 0
pVertexBuffer->m_fTexCoords[0] = pBranches->m_pTexCoords0[i * 2];
pVertexBuffer->m_fTexCoords[1] = pBranches->m_pTexCoords0[i * 2 + 1];
// texcoords for layer 1 (if enabled)
#ifdef WRAPPER_RENDER_SELF_SHADOWS
pVertexBuffer->m_fShadowCoords[0] = pBranches->m_pTexCoords1[i * 2];
pVertexBuffer->m_fShadowCoords[1] = pBranches->m_pTexCoords1[i * 2 + 1];
#endif
// extra data for gpu wind
#ifdef WRAPPER_USE_GPU_WIND
pVertexBuffer->m_fWindIndex = 4.0f * pBranches->m_pWindMatrixIndices[i];
pVertexBuffer->m_fWindWeight = pBranches->m_pWindWeights[i];
#endif
++pVertexBuffer;
}
m_pBranchVertexBuffer->Unlock();
}
// create and fill the index counts for each LOD
UINT unNumLodLevels = m_pSpeedTree->GetNumBranchLodLevels();
m_pBranchIndexCounts = new unsigned short[unNumLodLevels];
for (UINT i = 0; i < unNumLodLevels; ++i)
{
// force update for particular LOD
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_BranchGeometry, i);
// check if this LOD has branches
if (pBranches->m_usNumStrips > 0)
m_pBranchIndexCounts[i] = pBranches->m_pStripLengths[0];
else
m_pBranchIndexCounts[i] = 0;
}
// set back to highest LOD
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_BranchGeometry, 0);
// the first LOD level contains the most indices of all the levels, so
// we use its size to allocate the index buffer
ms_lpd3dDevice->CreateIndexBuffer(m_pBranchIndexCounts[0] * sizeof(unsigned short), D3DUSAGE_WRITEONLY, D3DFMT_INDEX16, D3DPOOL_MANAGED, &m_pBranchIndexBuffer);
// fill the index buffer
unsigned short* pIndexBuffer = NULL;
m_pBranchIndexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pIndexBuffer), 0);
memcpy(pIndexBuffer, pBranches->m_pStrips[0], pBranches->m_pStripLengths[0] * sizeof(unsigned short));
m_pBranchIndexBuffer->Unlock();
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupFrondBuffers
void CSpeedTreeWrapper::SetupFrondBuffers(void)
{
// reference to frond structure
CSpeedTreeRT::SGeometry::SIndexed* pFronds = &(m_pGeometryCache->m_sFronds);
m_unFrondVertexCount = pFronds->m_usVertexCount; // we asked for a contiguous strip
// check if tree has fronds
if (m_unFrondVertexCount > 1)
{
// create the vertex buffer for storing frond vertices
SFVFBranchVertex * pVertexBuffer = NULL;
#ifndef WRAPPER_USE_CPU_WIND
ms_lpd3dDevice->CreateVertexBuffer(m_unFrondVertexCount * sizeof(SFVFBranchVertex), D3DUSAGE_WRITEONLY, D3DFVF_SPEEDTREE_BRANCH_VERTEX, D3DPOOL_MANAGED, &m_pFrondVertexBuffer);
// fill the vertex buffer by interleaving SpeedTree data
m_pFrondVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), 0);
#else
ms_lpd3dDevice->CreateVertexBuffer(m_unFrondVertexCount * sizeof(SFVFBranchVertex), D3DUSAGE_DYNAMIC, D3DFVF_SPEEDTREE_BRANCH_VERTEX, D3DPOOL_SYSTEMMEM, &m_pFrondVertexBuffer);
// fill the vertex buffer by interleaving SpeedTree data
m_pFrondVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
#endif
for (UINT i = 0; i < m_unFrondVertexCount; ++i)
{
// position
memcpy(&pVertexBuffer->m_vPosition, &(pFronds->m_pCoords[i * 3]), 3 * sizeof(float));
// normal or color
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
memcpy(&pVertexBuffer->m_vNormal, &(pFronds->m_pNormals[i * 3]), 3 * sizeof(float));
#else
pVertexBuffer->m_dwDiffuseColor = pFronds->m_pColors[i];
#endif
// texcoords for layer 0
pVertexBuffer->m_fTexCoords[0] = pFronds->m_pTexCoords0[i * 2];
pVertexBuffer->m_fTexCoords[1] = pFronds->m_pTexCoords0[i * 2 + 1];
// texcoords for layer 1 (if enabled)
#ifdef WRAPPER_RENDER_SELF_SHADOWS
pVertexBuffer->m_fShadowCoords[0] = pFronds->m_pTexCoords1[i * 2];
pVertexBuffer->m_fShadowCoords[1] = pFronds->m_pTexCoords1[i * 2 + 1];
#endif
// extra data for gpu wind
#ifdef WRAPPER_USE_GPU_WIND
pVertexBuffer->m_fWindIndex = 4.0f * pFronds->m_pWindMatrixIndices[i];
pVertexBuffer->m_fWindWeight = pFronds->m_pWindWeights[i];
#endif
++pVertexBuffer;
}
m_pFrondVertexBuffer->Unlock();
// create and fill the index counts for each LOD
UINT unNumLodLevels = m_pSpeedTree->GetNumFrondLodLevels();
m_pFrondIndexCounts = new unsigned short[unNumLodLevels];
for (WORD j = 0; j < unNumLodLevels; ++j)
{
// force update for this LOD
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_FrondGeometry, -1, j);
// check if this LOD has fronds
if (pFronds->m_usNumStrips > 0)
m_pFrondIndexCounts[j] = pFronds->m_pStripLengths[0];
else
m_pFrondIndexCounts[j] = 0;
}
// go back to highest LOD
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_FrondGeometry, -1, 0);
// the first LOD level contains the most indices of all the levels, so
// we use its size to allocate the index buffer
ms_lpd3dDevice->CreateIndexBuffer(m_pFrondIndexCounts[0] * sizeof(unsigned short), D3DUSAGE_WRITEONLY, D3DFMT_INDEX16, D3DPOOL_MANAGED, &m_pFrondIndexBuffer);
// fill the index buffer
unsigned short * pIndexBuffer = NULL;
m_pFrondIndexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pIndexBuffer), 0);
memcpy(pIndexBuffer, pFronds->m_pStrips[0], pFronds->m_pStripLengths[0] * sizeof(unsigned short));
m_pFrondIndexBuffer->Unlock();
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupLeafBuffers
void CSpeedTreeWrapper::SetupLeafBuffers(void)
{
// set up constants
const short anVertexIndices[6] = { 0, 1, 2, 0, 2, 3 };
//const int nNumLeafMaps = m_pTextureInfo->m_uiLeafTextureCount;
// set up the leaf counts for each LOD
m_usNumLeafLods = m_pSpeedTree->GetNumLeafLodLevels();
// create array of vertex buffers (one for each LOD)
m_pLeafVertexBuffer = new LPDIRECT3DVERTEXBUFFER8[m_usNumLeafLods];
// create array of bools for CPU updating (so we don't update for each instance)
m_pLeavesUpdatedByCpu = new bool[m_usNumLeafLods];
// cycle through LODs
for (UINT unLod = 0; unLod < m_usNumLeafLods; ++unLod)
{
m_pLeavesUpdatedByCpu[unLod] = false;
m_pLeafVertexBuffer[unLod] = NULL;
// if this LOD has no leaves, skip it
unsigned short usLeafCount = m_pGeometryCache->m_sLeaves0.m_usLeafCount;
if (usLeafCount < 1)
continue;
SFVFLeafVertex* pVertexBuffer = NULL;
// create the vertex buffer for storing leaf vertices
#ifndef WRAPPER_USE_CPU_LEAF_PLACEMENT
ms_lpd3dDevice->CreateVertexBuffer(usLeafCount * 6 * sizeof(SFVFLeafVertex), D3DUSAGE_WRITEONLY, D3DFVF_SPEEDTREE_LEAF_VERTEX, D3DPOOL_MANAGED, &m_pLeafVertexBuffer[unLod]);
// fill the vertex buffer by interleaving SpeedTree data
m_pLeafVertexBuffer[unLod]->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), 0);
#else
ms_lpd3dDevice->CreateVertexBuffer(usLeafCount * 6 * sizeof(SFVFLeafVertex), D3DUSAGE_DYNAMIC, D3DFVF_SPEEDTREE_LEAF_VERTEX, D3DPOOL_SYSTEMMEM, &m_pLeafVertexBuffer[unLod]);
// fill the vertex buffer by interleaving SpeedTree data
m_pLeafVertexBuffer[unLod]->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
#endif
SFVFLeafVertex* pVertex = pVertexBuffer;
for (UINT unLeaf = 0; unLeaf < usLeafCount; ++unLeaf)
{
const CSpeedTreeRT::SGeometry::SLeaf* pLeaf = &(m_pGeometryCache->m_sLeaves0);
for (UINT unVert = 0; unVert < 6; ++unVert) // 6 verts == 2 triangles
{
// position
memcpy(pVertex->m_vPosition, &(pLeaf->m_pCenterCoords[unLeaf * 3]), 3 * sizeof(float));
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
// normal
memcpy(&pVertex->m_vNormal, &(pLeaf->m_pNormals[unLeaf * 3]), 3 * sizeof(float));
#else
// color
pVertex->m_dwDiffuseColor = pLeaf->m_pColors[unLeaf];
#endif
// tex coord
memcpy(pVertex->m_fTexCoords, &(pLeaf->m_pLeafMapTexCoords[unLeaf][anVertexIndices[unVert] * 2]), 2 * sizeof(float));
// wind weights
#ifdef WRAPPER_USE_GPU_WIND
pVertex->m_fWindIndex = 4.0f * pLeaf->m_pWindMatrixIndices[unLeaf];
pVertex->m_fWindWeight = pLeaf->m_pWindWeights[unLeaf];
#endif
// GPU placement data
#ifdef WRAPPER_USE_GPU_LEAF_PLACEMENT
pVertex->m_fLeafPlacementIndex = c_nVertexShader_LeafTables + pLeaf->m_pLeafClusterIndices[unLeaf] * 4.0f + anVertexIndices[unVert];
pVertex->m_fLeafScalarValue = m_pSpeedTree->GetLeafLodSizeAdjustments()[unLod];
#endif
++pVertex;
}
}
m_pLeafVertexBuffer[unLod]->Unlock();
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::Advance
void CSpeedTreeWrapper::Advance(void)
{
// compute LOD level (based on distance from camera)
m_pSpeedTree->ComputeLodLevel();
m_pSpeedTree->SetLodLevel(1.0f);
// compute wind
#ifdef WRAPPER_USE_CPU_WIND
m_pSpeedTree->ComputeWindEffects(true, true, true);
#endif
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::MakeInstance
CSpeedTreeWrapper * CSpeedTreeWrapper::MakeInstance()
{
CSpeedTreeWrapper * pInstance = new CSpeedTreeWrapper;
// make an instance of this object's SpeedTree
pInstance->m_bIsInstance = true;
pInstance->m_pSpeedTree = m_pSpeedTree->MakeInstance();
if (pInstance->m_pSpeedTree)
{
// use the same materials
pInstance->m_cBranchMaterial = m_cBranchMaterial;
pInstance->m_cLeafMaterial = m_cLeafMaterial;
pInstance->m_cFrondMaterial = m_cFrondMaterial;
pInstance->m_CompositeImageInstance.SetImagePointer(m_CompositeImageInstance.GetGraphicImagePointer());
pInstance->m_BranchImageInstance.SetImagePointer(m_BranchImageInstance.GetGraphicImagePointer());
if (!m_ShadowImageInstance.IsEmpty())
pInstance->m_ShadowImageInstance.SetImagePointer(m_ShadowImageInstance.GetGraphicImagePointer());
pInstance->m_pTextureInfo = m_pTextureInfo;
// use the same geometry cache
pInstance->m_pGeometryCache = m_pGeometryCache;
// use the same buffers
pInstance->m_pBranchIndexBuffer = m_pBranchIndexBuffer;
pInstance->m_pBranchIndexCounts = m_pBranchIndexCounts;
pInstance->m_pBranchVertexBuffer = m_pBranchVertexBuffer;
pInstance->m_unBranchVertexCount = m_unBranchVertexCount;
pInstance->m_pFrondIndexBuffer = m_pFrondIndexBuffer;
pInstance->m_pFrondIndexCounts = m_pFrondIndexCounts;
pInstance->m_pFrondVertexBuffer = m_pFrondVertexBuffer;
pInstance->m_unFrondVertexCount = m_unFrondVertexCount;
pInstance->m_pLeafVertexBuffer = m_pLeafVertexBuffer;
pInstance->m_usNumLeafLods = m_usNumLeafLods;
pInstance->m_pLeavesUpdatedByCpu = m_pLeavesUpdatedByCpu;
// new stuff
memcpy(pInstance->m_afPos, m_afPos, 3 * sizeof(float));
memcpy(pInstance->m_afBoundingBox, m_afBoundingBox, 6 * sizeof(float));
pInstance->m_pInstanceOf = this;
m_vInstances.push_back(pInstance);
}
else
{
fprintf(stderr, "SpeedTreeRT Error: %s\n", m_pSpeedTree->GetCurrentError());
delete pInstance;
pInstance = NULL;
}
return pInstance;
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::GetInstances
CSpeedTreeWrapper ** CSpeedTreeWrapper::GetInstances(UINT& nCount)
{
nCount = m_vInstances.size();
if (nCount)
return &(m_vInstances[0]);
else
return NULL;
}
void CSpeedTreeWrapper::DeleteInstance(CSpeedTreeWrapper * pInstance)
{
std::vector<CSpeedTreeWrapper *>::iterator itor = m_vInstances.begin();
while (itor != m_vInstances.end())
{
if (*itor == pInstance)
{
itor = m_vInstances.erase(itor);
}
else
++itor;
}
delete pInstance;
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupBranchForTreeType
void CSpeedTreeWrapper::SetupBranchForTreeType(void) const
{
#ifdef WRAPPER_USE_DYNAMIC_LIGHTING
// set lighting material
STATEMANAGER.SetMaterial(m_cBranchMaterial.Get());
SetShaderConstants(m_pSpeedTree->GetBranchMaterial());
#endif
// update the branch geometry for CPU wind
#ifdef WRAPPER_USE_CPU_WIND
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_BranchGeometry);
if (m_pGeometryCache->m_sBranches.m_usNumStrips > 0)
{
// update the vertex array
SFVFBranchVertex* pVertexBuffer = NULL;
m_pBranchVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
for (UINT i = 0; i < m_unBranchVertexCount; ++i)
{
memcpy(&(pVertexBuffer[i].m_vPosition), &(m_pGeometryCache->m_sBranches.m_pCoords[i * 3]), 3 * sizeof(float));
}
m_pBranchVertexBuffer->Unlock();
}
#endif
LPDIRECT3DTEXTURE8 lpd3dTexture;
// set texture map
if ((lpd3dTexture = m_BranchImageInstance.GetTextureReference().GetD3DTexture()))
STATEMANAGER.SetTexture(0, lpd3dTexture);
// bind shadow texture
#ifdef WRAPPER_RENDER_SELF_SHADOWS
if (ms_bSelfShadowOn && (lpd3dTexture = m_ShadowImageInstance.GetTextureReference().GetD3DTexture()))
STATEMANAGER.SetTexture(1, lpd3dTexture);
else
STATEMANAGER.SetTexture(1, NULL);
#endif
if (m_pGeometryCache->m_sBranches.m_usVertexCount > 0)
{
// activate the branch vertex buffer
STATEMANAGER.SetStreamSource(0, m_pBranchVertexBuffer, sizeof(SFVFBranchVertex));
// set the index buffer
STATEMANAGER.SetIndices(m_pBranchIndexBuffer, 0);
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::RenderBranches
void CSpeedTreeWrapper::RenderBranches(void) const
{
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_BranchGeometry);
if (m_pGeometryCache->m_fBranchAlphaTestValue)
{
PositionTree();
// set alpha test value
STATEMANAGER.SetRenderState(D3DRS_ALPHAREF, DWORD(m_pGeometryCache->m_fBranchAlphaTestValue));
// render if this LOD has branches
if (m_pBranchIndexCounts &&
m_pBranchIndexCounts[m_pGeometryCache->m_sBranches.m_nDiscreteLodLevel] > 0)
{
ms_faceCount += m_pBranchIndexCounts[m_pGeometryCache->m_sBranches.m_nDiscreteLodLevel] - 2;
STATEMANAGER.DrawIndexedPrimitive(D3DPT_TRIANGLESTRIP, 0, m_pGeometryCache->m_sBranches.m_usVertexCount, 0, m_pBranchIndexCounts[m_pGeometryCache->m_sBranches.m_nDiscreteLodLevel] - 2);
}
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupFrondForTreeType
void CSpeedTreeWrapper::SetupFrondForTreeType(void) const
{
#ifdef SPEEDTREE_LIGHTING_DYNAMIC
// set lighting material
STATEMANAGER.SetMaterial(m_cFrondMaterial.Get());
SetShaderConstants(m_pSpeedTree->GetFrondMaterial());
#endif
// update the frond geometry for CPU wind
#ifdef WRAPPER_USE_CPU_WIND
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_FrondGeometry);
if (m_pGeometryCache->m_sFronds.m_usNumStrips > 0)
{
// update the vertex array
SFVFBranchVertex * pVertexBuffer = NULL;
m_pFrondVertexBuffer->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertexBuffer), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
for (UINT i = 0; i < m_unFrondVertexCount; ++i)
{
memcpy(&(pVertexBuffer[i].m_vPosition), &(m_pGeometryCache->m_sFronds.m_pCoords[i * 3]), 3 * sizeof(float));
}
m_pFrondVertexBuffer->Unlock();
}
#endif
if (!m_CompositeImageInstance.IsEmpty())
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
// bind shadow texture
#ifdef WRAPPER_RENDER_SELF_SHADOWS
LPDIRECT3DTEXTURE8 lpd3dTexture;
if ((lpd3dTexture = m_ShadowImageInstance.GetTextureReference().GetD3DTexture()))
STATEMANAGER.SetTexture(1, lpd3dTexture);
#endif
if (m_pGeometryCache->m_sFronds.m_usVertexCount > 0)
{
// activate the frond vertex buffer
STATEMANAGER.SetStreamSource(0, m_pFrondVertexBuffer, sizeof(SFVFBranchVertex));
// set the index buffer
STATEMANAGER.SetIndices(m_pFrondIndexBuffer, 0);
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::RenderFronds
void CSpeedTreeWrapper::RenderFronds(void) const
{
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_FrondGeometry);
if (m_pGeometryCache->m_fFrondAlphaTestValue > 0.0f)
{
PositionTree();
// set alpha test value
STATEMANAGER.SetRenderState(D3DRS_ALPHAREF, DWORD(m_pGeometryCache->m_fFrondAlphaTestValue));
// render if this LOD has fronds
if (m_pFrondIndexCounts &&
m_pFrondIndexCounts[m_pGeometryCache->m_sFronds.m_nDiscreteLodLevel] > 0)
{
ms_faceCount += m_pFrondIndexCounts[m_pGeometryCache->m_sFronds.m_nDiscreteLodLevel] - 2;
STATEMANAGER.DrawIndexedPrimitive(D3DPT_TRIANGLESTRIP, 0, m_pGeometryCache->m_sFronds.m_usVertexCount, 0, m_pFrondIndexCounts[m_pGeometryCache->m_sFronds.m_nDiscreteLodLevel] - 2);
}
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetupLeafForTreeType
void CSpeedTreeWrapper::SetupLeafForTreeType(void) const
{
#ifdef SPEEDTREE_LIGHTING_DYNAMIC
// set lighting material
STATEMANAGER.SetMaterial(m_cLeafMaterial.Get());
SetShaderConstants(m_pSpeedTree->GetLeafMaterial());
#endif
// pass leaf tables to shader
#ifdef WRAPPER_USE_GPU_LEAF_PLACEMENT
UploadLeafTables(c_nVertexShader_LeafTables);
#endif
if (!m_CompositeImageInstance.IsEmpty())
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
// bind shadow texture
#ifdef WRAPPER_RENDER_SELF_SHADOWS
STATEMANAGER.SetTexture(1, NULL);
#endif
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::UploadLeafTables
#ifdef WRAPPER_USE_GPU_LEAF_PLACEMENT
void CSpeedTreeWrapper::UploadLeafTables(UINT uiLocation) const
{
// query leaf cluster table from RT
UINT uiEntryCount = 0;
const float * pTable = m_pSpeedTree->GetLeafBillboardTable(uiEntryCount);
// upload for vertex shader use
STATEMANAGER.SetVertexShaderConstant(c_nVertexShader_LeafTables, pTable, uiEntryCount / 4);
}
#endif
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::RenderLeaves
void CSpeedTreeWrapper::RenderLeaves(void) const
{
// update leaf geometry
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_LeafGeometry);
// update the LOD level vertex arrays we need
#if defined(WRAPPER_USE_GPU_LEAF_PLACEMENT) && defined(WRAPPER_USE_GPU_WIND)
// do nothing, needs no updates
#else
#if !defined WRAPPER_USE_NO_WIND || defined WRAPPER_USE_CPU_LEAF_PLACEMENT
// possibly need to update both leaf LOD's
for (UINT i = 0; i < 2; ++i)
{
// reference to leaf structure
const CSpeedTreeRT::SGeometry::SLeaf* pLeaf = (i == 0) ? &m_pGeometryCache->m_sLeaves0 : &m_pGeometryCache->m_sLeaves1;
int unLod = pLeaf->m_nDiscreteLodLevel;
#if defined WRAPPER_USE_GPU_LEAF_PLACEMENT
if (pLeaf->m_bIsActive && !m_pLeavesUpdatedByCpu[unLod])
{
// update the centers
SFVFLeafVertex* pVertex = NULL;
m_pLeafVertexBuffer[unLod]->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertex), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK);
for (UINT unLeaf = 0; unLeaf < pLeaf->m_usLeafCount; ++unLeaf)
{
D3DXVECTOR3 vecCenter(&(pLeaf->m_pCenterCoords[unLeaf * 3]));
(pVertex++)->m_vPosition = vecCenter; // vertex 0
(pVertex++)->m_vPosition = vecCenter; // vertex 1
(pVertex++)->m_vPosition = vecCenter; // vertex 2
(pVertex++)->m_vPosition = vecCenter; // vertex 0
(pVertex++)->m_vPosition = vecCenter; // vertex 2
(pVertex++)->m_vPosition = vecCenter; // vertex 3
}
m_pLeafVertexBuffer[unLod]->Unlock();
m_pLeavesUpdatedByCpu[unLod] = true;
}
#else
if (pLeaf->m_bIsActive && m_pLeafVertexBuffer[unLod])
{
// update the vertex positions
SFVFLeafVertex * pVertex = NULL;
const UINT VERTEX_NUM = 8192;
if (pLeaf->m_usLeafCount*3>=VERTEX_NUM)
return;
D3DXVECTOR3 akPosition[VERTEX_NUM];
D3DXVECTOR3*pkPosition=akPosition;
const float* center=pLeaf->m_pCenterCoords;
for (UINT unLeaf = 0; unLeaf < pLeaf->m_usLeafCount; ++unLeaf)
{
pkPosition[0].x=pLeaf->m_pLeafMapCoords[unLeaf][0]+center[0];
pkPosition[0].y=pLeaf->m_pLeafMapCoords[unLeaf][1]+center[1];
pkPosition[0].z=pLeaf->m_pLeafMapCoords[unLeaf][2]+center[2];
pkPosition[1].x=pLeaf->m_pLeafMapCoords[unLeaf][4]+center[0];
pkPosition[1].y=pLeaf->m_pLeafMapCoords[unLeaf][5]+center[1];
pkPosition[1].z=pLeaf->m_pLeafMapCoords[unLeaf][6]+center[2];
pkPosition[2].x=pLeaf->m_pLeafMapCoords[unLeaf][8]+center[0];
pkPosition[2].y=pLeaf->m_pLeafMapCoords[unLeaf][9]+center[1];
pkPosition[2].z=pLeaf->m_pLeafMapCoords[unLeaf][10]+center[2];
pkPosition[3]=pkPosition[0];
pkPosition[4]=pkPosition[2];
pkPosition[5].x=pLeaf->m_pLeafMapCoords[unLeaf][12]+center[0];
pkPosition[5].y=pLeaf->m_pLeafMapCoords[unLeaf][13]+center[1];
pkPosition[5].z=pLeaf->m_pLeafMapCoords[unLeaf][14]+center[2];
pkPosition+=6;
center+=3;
}
if (SUCCEEDED(
m_pLeafVertexBuffer[unLod]->Lock(0, 0, reinterpret_cast<BYTE**>(&pVertex), D3DLOCK_DISCARD | D3DLOCK_NOSYSLOCK)
))
{
UINT uVtxCount=pLeaf->m_usLeafCount*6;
for (UINT i = 0; i<uVtxCount; ++i)
pVertex[i].m_vPosition=akPosition[i];
/*
memcpy(vec0, pLeaf->m_pLeafMapCoords[unLeaf]+0, sizeof(D3DXVECTOR3));
memcpy(vec1, pLeaf->m_pLeafMapCoords[unLeaf]+4, sizeof(D3DXVECTOR3));
memcpy(vec2, pLeaf->m_pLeafMapCoords[unLeaf]+8, sizeof(D3DXVECTOR3));
memcpy(vec3, pLeaf->m_pLeafMapCoords[unLeaf]+12, sizeof(D3DXVECTOR3));
memcpy(vecCenter, pLeaf->m_pCenterCoords + unLeaf * 3, sizeof(D3DXVECTOR3));
vec0 += vecCenter;
vec1 += vecCenter;
vec2 += vecCenter;
vec3 += vecCenter;
pVertex[0].m_vPosition = vec0;
pVertex[3].m_vPosition = vec0;
pVertex[1].m_vPosition = vec1;
pVertex[4].m_vPosition = vec2;
pVertex[2].m_vPosition = vec2;
pVertex[5].m_vPosition = vec3;
*/
/*
for (UINT unLeaf = 0; unLeaf < pLeaf->m_usLeafCount; ++unLeaf)
{
D3DXVECTOR3 vecCenter(&(pLeaf->m_pCenterCoords[unLeaf * 3]));
D3DXVECTOR3 vec0(&pLeaf->m_pLeafMapCoords[unLeaf][0]);
D3DXVECTOR3 vec1(&pLeaf->m_pLeafMapCoords[unLeaf][4]);
D3DXVECTOR3 vec2(&pLeaf->m_pLeafMapCoords[unLeaf][8]);
D3DXVECTOR3 vec3(&pLeaf->m_pLeafMapCoords[unLeaf][12]);
(pVertex++)->m_vPosition = vecCenter + vec0; // vertex 0
(pVertex++)->m_vPosition = vecCenter + vec1; // vertex 1
(pVertex++)->m_vPosition = vecCenter + vec2; // vertex 2
(pVertex++)->m_vPosition = vecCenter + vec0; // vertex 0
(pVertex++)->m_vPosition = vecCenter + vec2; // vertex 2
(pVertex++)->m_vPosition = vecCenter + vec3; // vertex 3
}
*/
m_pLeafVertexBuffer[unLod]->Unlock();
}
}
#endif
}
#endif
#endif
PositionTree();
// render LODs, if needed
for (UINT unLeafLevel = 0; unLeafLevel < 2; ++unLeafLevel)
{
const CSpeedTreeRT::SGeometry::SLeaf* pLeaf = (unLeafLevel == 0) ?
&m_pGeometryCache->m_sLeaves0 : &m_pGeometryCache->m_sLeaves1;
int unLod = pLeaf->m_nDiscreteLodLevel;
if (unLod > -1 && pLeaf->m_bIsActive && pLeaf->m_usLeafCount > 0)
{
STATEMANAGER.SetStreamSource(0, m_pLeafVertexBuffer[unLod], sizeof(SFVFLeafVertex));
STATEMANAGER.SetRenderState(D3DRS_ALPHAREF, DWORD(pLeaf->m_fAlphaTestValue));
ms_faceCount += pLeaf->m_usLeafCount * 2;
STATEMANAGER.DrawPrimitive(D3DPT_TRIANGLELIST, 0, pLeaf->m_usLeafCount * 2);
}
}
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::EndLeafForTreeType
void CSpeedTreeWrapper::EndLeafForTreeType(void)
{
// reset copy flags for CPU wind
for (UINT i = 0; i < m_usNumLeafLods; ++i)
m_pLeavesUpdatedByCpu[i] = false;
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::RenderBillboards
void CSpeedTreeWrapper::RenderBillboards(void) const
{
// render billboards in immediate mode (as close as DirectX comes to immediate mode)
#ifdef WRAPPER_BILLBOARD_MODE
if (!m_CompositeImageInstance.IsEmpty())
STATEMANAGER.SetTexture(0, m_CompositeImageInstance.GetTextureReference().GetD3DTexture());
PositionTree();
struct SBillboardVertex
{
float fX, fY, fZ;
float fU, fV;
};
m_pSpeedTree->GetGeometry(*m_pGeometryCache, SpeedTree_BillboardGeometry);
if (m_pGeometryCache->m_sBillboard0.m_bIsActive)
{
const float* pCoords = m_pGeometryCache->m_sBillboard0.m_pCoords;
const float* pTexCoords = m_pGeometryCache->m_sBillboard0.m_pTexCoords;
SBillboardVertex sVertex[4] =
{
{ pCoords[0], pCoords[1], pCoords[2], pTexCoords[0], pTexCoords[1] },
{ pCoords[3], pCoords[4], pCoords[5], pTexCoords[2], pTexCoords[3] },
{ pCoords[6], pCoords[7], pCoords[8], pTexCoords[4], pTexCoords[5] },
{ pCoords[9], pCoords[10], pCoords[11], pTexCoords[6], pTexCoords[7] },
};
STATEMANAGER.SetVertexShader(D3DFVF_XYZ | D3DFVF_TEX1);
STATEMANAGER.SetRenderState(D3DRS_ALPHAREF, DWORD(m_pGeometryCache->m_sBillboard0.m_fAlphaTestValue));
ms_faceCount += 2;
STATEMANAGER.DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, sVertex, sizeof(SBillboardVertex));
}
// if tree supports 360 degree billboards, render the second
if (m_pGeometryCache->m_sBillboard1.m_bIsActive)
{
const float* pCoords = m_pGeometryCache->m_sBillboard1.m_pCoords;
const float* pTexCoords = m_pGeometryCache->m_sBillboard1.m_pTexCoords;
SBillboardVertex sVertex[4] =
{
{ pCoords[0], pCoords[1], pCoords[2], pTexCoords[0], pTexCoords[1] },
{ pCoords[3], pCoords[4], pCoords[5], pTexCoords[2], pTexCoords[3] },
{ pCoords[6], pCoords[7], pCoords[8], pTexCoords[4], pTexCoords[5] },
{ pCoords[9], pCoords[10], pCoords[11], pTexCoords[6], pTexCoords[7] },
};
STATEMANAGER.SetRenderState(D3DRS_ALPHAREF, DWORD(m_pGeometryCache->m_sBillboard1.m_fAlphaTestValue));
ms_faceCount += 2;
STATEMANAGER.DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, sVertex, sizeof(SBillboardVertex));
}
#ifdef WRAPPER_RENDER_HORIZONTAL_BILLBOARD
// render horizontal billboard (if enabled)
if (m_pGeometryCache->m_sHorizontalBillboard.m_bIsActive)
{
const float* pCoords = m_pGeometryCache->m_sHorizontalBillboard.m_pCoords;
const float* pTexCoords = m_pGeometryCache->m_sHorizontalBillboard.m_pTexCoords;
SBillboardVertex sVertex[4] =
{
{ pCoords[0], pCoords[1], pCoords[2], pTexCoords[0], pTexCoords[1] },
{ pCoords[3], pCoords[4], pCoords[5], pTexCoords[2], pTexCoords[3] },
{ pCoords[6], pCoords[7], pCoords[8], pTexCoords[4], pTexCoords[5] },
{ pCoords[9], pCoords[10], pCoords[11], pTexCoords[6], pTexCoords[7] },
};
STATEMANAGER.SetRenderState(D3DRS_ALPHAREF, DWORD(m_pGeometryCache->m_sHorizontalBillboard.m_fAlphaTestValue));
ms_faceCount += 2;
STATEMANAGER.DrawPrimitiveUP(D3DPT_TRIANGLEFAN, 2, sVertex, sizeof(SBillboardVertex));
}
#endif
#endif
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::CleanUpMemory
void CSpeedTreeWrapper::CleanUpMemory(void)
{
if (!m_bIsInstance)
m_pSpeedTree->DeleteTransientData();
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::PositionTree
void CSpeedTreeWrapper::PositionTree(void) const
{
D3DXVECTOR3 vecPosition = m_pSpeedTree->GetTreePosition();
D3DXMATRIX matTranslation;
D3DXMatrixIdentity(&matTranslation);
D3DXMatrixTranslation(&matTranslation, vecPosition.x, vecPosition.y, vecPosition.z);
// store translation for client-side transformation
STATEMANAGER.SetTransform(D3DTS_WORLD, &matTranslation);
// store translation for use in vertex shader
D3DXVECTOR4 vecConstant(vecPosition[0], vecPosition[1], vecPosition[2], 0.0f);
STATEMANAGER.SetVertexShaderConstant(c_nVertexShader_TreePos, (float*)&vecConstant, 1);
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::LoadTexture
bool CSpeedTreeWrapper::LoadTexture(const char * pFilename, CGraphicImageInstance & rImage)
{
CResource * pResource = CResourceManager::Instance().GetResourcePointer(pFilename);
rImage.SetImagePointer(static_cast<CGraphicImage *>(pResource));
if (rImage.IsEmpty())
return false;
//TraceError("SpeedTreeWrapper::LoadTexture: %s", pFilename);
return true;
}
///////////////////////////////////////////////////////////////////////
// CSpeedTreeWrapper::SetShaderConstants
void CSpeedTreeWrapper::SetShaderConstants(const float* pMaterial) const
{
const float afUsefulConstants[] =
{
m_pSpeedTree->GetLeafLightingAdjustment(), 0.0f, 0.0f, 0.0f,
};
STATEMANAGER.SetVertexShaderConstant(c_nVertexShader_LeafLightingAdjustment, afUsefulConstants, 1);
const float afMaterial[] =
{
pMaterial[0], pMaterial[1], pMaterial[2], 1.0f,
pMaterial[3], pMaterial[4], pMaterial[5], 1.0f
};
STATEMANAGER.SetVertexShaderConstant(c_nVertexShader_Material, afMaterial, 2);
}
void CSpeedTreeWrapper::SetPosition(float x, float y, float z)
{
m_afPos[0] = x;
m_afPos[1] = y;
m_afPos[2] = z;
m_pSpeedTree->SetTreePosition(x, y, z);
CGraphicObjectInstance::SetPosition(x, y, z);
}
bool CSpeedTreeWrapper::GetBoundingSphere(D3DXVECTOR3 & v3Center, float & fRadius)
{
float fX, fY, fZ;
fX = m_afBoundingBox[3] - m_afBoundingBox[0];
fY = m_afBoundingBox[4] - m_afBoundingBox[1];
fZ = m_afBoundingBox[5] - m_afBoundingBox[2];
v3Center.x = 0.0f;
v3Center.y = 0.0f;
v3Center.z = fZ * 0.5f;
fRadius = sqrtf(fX * fX + fY * fY + fZ * fZ) * 0.5f * 0.9f; // 0.9f for reduce size
D3DXVECTOR3 vec = m_pSpeedTree->GetTreePosition();
v3Center+=vec;
return true;
}
void CSpeedTreeWrapper::CalculateBBox()
{
float fX, fY, fZ;
fX = m_afBoundingBox[3] - m_afBoundingBox[0];
fY = m_afBoundingBox[4] - m_afBoundingBox[1];
fZ = m_afBoundingBox[5] - m_afBoundingBox[2];
m_v3BBoxMin.x = -fX / 2.0f;
m_v3BBoxMin.y = -fY / 2.0f;
m_v3BBoxMin.z = 0.0f;
m_v3BBoxMax.x = fX / 2.0f;
m_v3BBoxMax.y = fY / 2.0f;
m_v3BBoxMax.z = fZ;
m_v4TBBox[0] = D3DXVECTOR4(m_v3BBoxMin.x, m_v3BBoxMin.y, m_v3BBoxMin.z, 1.0f);
m_v4TBBox[1] = D3DXVECTOR4(m_v3BBoxMin.x, m_v3BBoxMax.y, m_v3BBoxMin.z, 1.0f);
m_v4TBBox[2] = D3DXVECTOR4(m_v3BBoxMax.x, m_v3BBoxMin.y, m_v3BBoxMin.z, 1.0f);
m_v4TBBox[3] = D3DXVECTOR4(m_v3BBoxMax.x, m_v3BBoxMax.y, m_v3BBoxMin.z, 1.0f);
m_v4TBBox[4] = D3DXVECTOR4(m_v3BBoxMin.x, m_v3BBoxMin.y, m_v3BBoxMax.z, 1.0f);
m_v4TBBox[5] = D3DXVECTOR4(m_v3BBoxMin.x, m_v3BBoxMax.y, m_v3BBoxMax.z, 1.0f);
m_v4TBBox[6] = D3DXVECTOR4(m_v3BBoxMax.x, m_v3BBoxMin.y, m_v3BBoxMax.z, 1.0f);
m_v4TBBox[7] = D3DXVECTOR4(m_v3BBoxMax.x, m_v3BBoxMax.y, m_v3BBoxMax.z, 1.0f);
const D3DXMATRIX & c_rmatTransform = GetTransform();
for (DWORD i = 0; i < 8; ++i)
{
D3DXVec4Transform(&m_v4TBBox[i], &m_v4TBBox[i], &c_rmatTransform);
if (0 == i)
{
m_v3TBBoxMin.x = m_v4TBBox[i].x;
m_v3TBBoxMin.y = m_v4TBBox[i].y;
m_v3TBBoxMin.z = m_v4TBBox[i].z;
m_v3TBBoxMax.x = m_v4TBBox[i].x;
m_v3TBBoxMax.y = m_v4TBBox[i].y;
m_v3TBBoxMax.z = m_v4TBBox[i].z;
}
else
{
if (m_v3TBBoxMin.x > m_v4TBBox[i].x)
m_v3TBBoxMin.x = m_v4TBBox[i].x;
if (m_v3TBBoxMax.x < m_v4TBBox[i].x)
m_v3TBBoxMax.x = m_v4TBBox[i].x;
if (m_v3TBBoxMin.y > m_v4TBBox[i].y)
m_v3TBBoxMin.y = m_v4TBBox[i].y;
if (m_v3TBBoxMax.y < m_v4TBBox[i].y)
m_v3TBBoxMax.y = m_v4TBBox[i].y;
if (m_v3TBBoxMin.z > m_v4TBBox[i].z)
m_v3TBBoxMin.z = m_v4TBBox[i].z;
if (m_v3TBBoxMax.z < m_v4TBBox[i].z)
m_v3TBBoxMax.z = m_v4TBBox[i].z;
}
}
}
// collision detection routines
UINT CSpeedTreeWrapper::GetCollisionObjectCount()
{
assert(m_pSpeedTree);
return m_pSpeedTree->GetCollisionObjectCount();
}
void CSpeedTreeWrapper::GetCollisionObject(UINT nIndex, CSpeedTreeRT::ECollisionObjectType& eType, float* pPosition, float* pDimensions)
{
assert(m_pSpeedTree);
m_pSpeedTree->GetCollisionObject(nIndex, eType, pPosition, pDimensions);
}
const float * CSpeedTreeWrapper::GetPosition()
{
return m_afPos;
}
void CSpeedTreeWrapper::GetTreeSize(float & r_fSize, float & r_fVariance)
{
m_pSpeedTree->GetTreeSize(r_fSize, r_fVariance);
}
// pscdVector may be null
void CSpeedTreeWrapper::OnUpdateCollisionData(const CStaticCollisionDataVector * /*pscdVector*/)
{
D3DXMATRIX mat;
D3DXMatrixTranslation(&mat, m_afPos[0], m_afPos[1], m_afPos[2]);
/////
for (UINT i = 0; i < GetCollisionObjectCount(); ++i)
{
CSpeedTreeRT::ECollisionObjectType ObjectType;
CStaticCollisionData CollisionData;
GetCollisionObject(i, ObjectType, (float * )&CollisionData.v3Position, CollisionData.fDimensions);
if (ObjectType == CSpeedTreeRT::CO_BOX)
continue;
switch(ObjectType)
{
case CSpeedTreeRT::CO_SPHERE:
CollisionData.dwType = COLLISION_TYPE_SPHERE;
CollisionData.fDimensions[0] = CollisionData.fDimensions[0] /** fSizeRatio*/;
//AddCollision(&CollisionData);
break;
case CSpeedTreeRT::CO_CYLINDER:
CollisionData.dwType = COLLISION_TYPE_CYLINDER;
CollisionData.fDimensions[0] = CollisionData.fDimensions[0] /** fSizeRatio*/;
CollisionData.fDimensions[1] = CollisionData.fDimensions[1] /** fSizeRatio*/;
//AddCollision(&CollisionData);
break;
/*case CSpeedTreeRT::CO_BOX:
break;*/
}
AddCollision(&CollisionData, &mat);
}
}